首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The ζ‐potential and hydrodynamic size (dh) of nanoparticles (NPs) are systematically controlled by capping gold NPs (AuNPs) with polymers having different charges and treating them in NaCl solutions of diverse concentrations. Interactions between AuNPs in hydrogel are caused by chemical reactions induced by 1,4‐dithiothreitol. The effect of ζ‐potential is clear, as negatively charged AuNPs can be aggregated in neutral agarose gel, but the amount of aggregation is significantly affected by the magnitude of the negative surface charge on the AuNPs. However, all positively charged AuNPs show negligible aggregation in agarose gel with slightly negative polarity. The effect of dh on AuNP aggregation is different from that of ζ‐potential. Although AuNPs with small dh generally show more aggregation than those with large dh, the amount of AuNP capping layer is critical. Thus, the amount of polymer present on NP surface needs to be considered to investigate the effect of dh on AuNP aggregation. Through extended Derjaguin, Landau, Verwey, Overbeek (XDLVO) theory, it is shown that the charges of the AuNPs and the hydrogel, as well as the dh of the NPs, are related to electrostatic repulsion and steric hindrance, which affect AuNP aggregation in hydrogel.  相似文献   

2.
Calcination of hydrated iron salts in the pores of both spherical and rod‐shaped mesoporous silica nanoparticles (NPs) changes the internal structure from an ordered 2D hexagonal structure into a smaller number of large voids in the particles with sizes ranging from large hollow cores down to ten nanometer voids. The voids only form when the heating rate is rapid at a rate of 30 °C min?1. The sizes of the voids are controlled reproducibly by the final calcination temperature; as the temperature is decreased the number of voids decreases as their size increases. The phase of the iron oxide NPs is α‐Fe2O3 when annealed at 500 °C, and Fe3O4 when annealed at lower temperatures. The water molecules in the hydrated iron (III) chloride precursor salts appear to play important roles by hydrolyzing Si? O? Si bonding, and the resulting silanol is mobile enough to affect the reconstruction into the framed hollow structures at high temperature. Along with hexahydrates, trivalent Fe3+ ions are assumed to contribute to the structure disruption of mesoporous silica by replacing tetrahedral Si4+ ions and making Fe? O? Si bonding. Volume fraction tomography images generated from transmission electron microscopy (TEM) images enable precise visualization of the structures. These results provide a controllable method of engineering the internal shapes in silica matrices containing superparamagnetic NPs.  相似文献   

3.
Designing and developing active, robust, and noble‐metal‐free catalysts with superior stability for electrocatalytic water splitting is of critical importance but remains a grand challenge. Here, a facile strategy is provided to synthesize a series of Co‐based self‐supported electrode materials by combining electrospinning and chemical vapor deposition (CVD) technologies. The Co, Co3O4, Co9S8 nanoparticles (NPs) are formed in situ simultaneously with the formation of carbon nanofibers (CNFs) during the CVD process, respectively. The Co‐based NPs are uniformly distributed through the CNFs and they can be directly used as the electrode materials for hydrogen evolution reaction (HER) in acid and oxygen evolution reaction (OER) in alkaline. The Co9S8/CNFs membrane exhibits the best HER activity with overpotential of 165 mV at j = 10 mA cm?2 and Tafel slope of 83 mV dec?1 and OER activity with overpotential of 230 mV at j = 10 mA cm?2 and Tafel slope of 72 mV dec?1. The onion‐like graphitic layers formed around the NPs not only improve the electrical conductivity of the electrode but also prevent the separation of the NPs from the carbon matrix as well as the aggregation.  相似文献   

4.
The synthesis of gold nanoparticles (Au NPs) capped by poly(1‐vinylpyrrolidin‐2‐one (PVP, average  = 10 000 kDa) yields moderately dispersed (6–8.5 nm) product with limited morphological control while larger NPs (15–20 nm) are reliably prepared using trisodium citrate (Na3Cit) as a reductant/capping agent. Excellent size control in the intermediate 10 nm regime is achieved by hybridizing these methodologies, with highly monodisperse, polycrystalline Au NPs forming. For a Na3Cit:PVP:Au ratio of 3.5:3.5:1, anisotropic NPs with an aspect ratio of 1.8:1 suggest the systematic agglomeration of NP pairs. Enhanced control of NP morphology is allowed by the 1,2‐tetradecanediol reduction of AuIII in the presence of straight chain, molecular anti‐agglomerants. Last, ligand substitution is used to controllably grow preformed Au seeds. In spite of the extended growth phase used, the replacement of phosphine by 1‐pentadecylamine affords highly monodisperse, cuboidal NPs containing a single clearly visible twinning plane. The allowance of particle growth parallel to this close‐packed plane explains the remarkable particle morphology.  相似文献   

5.
Highly conductive, unsophisticated and easy to be obtained physical exfoliated graphite (PHG) supporting well dispersed magnetite, Fe3O4/PHG nanocomposite, has been prepared by a one-step chemical strategy and physico-chemical characterized. The nanocomposite, favoured by the a-polar nanoparticles (NPs) capping, results in a self-assembled monolayer of monodispersed Fe3O4, covering perfectly the hydrophobic surfaces of PHG. The nanocomposite as an electrode material was fabricated into a supercapacitor and characterized by cyclic voltammetry (CV) and galvanostatic charge–discharge measurements. It shows, after a suitable annealing, significant electrochemical properties (capacitance value of 787 F/g at 0.5 A g−1 and a Fe3O4/PHG weight ratio of 0.31) and good cycling stability (retention 91% after 30,000 cycles). Highly monodispersed very fine Fe3O4 NPs, covered by organic chains, have been also synthesized. The high surface area Fe3O4 NPs, after washing to leave a low content of organic chains able to avoid aggregation without excessively affecting the electrical properties of the material, exhibit remarkable pseudocapacitive activities, including the highest specific capacitance over reported for Fe3O4 (300 F/g at 0.5 A g−1).  相似文献   

6.
Thermo‐chemotherapy combining photothermal therapy (PTT) with chemotherapy has become a potent approach for antitumor treatment. In this study, a multifunctional drug‐delivery nanoplatform based on polyethylene glycol (PEG)‐modified mesoporous silica‐coated bismuth selenide nanoparticles (referred to as Bi2Se3@mSiO2‐PEG NPs) is developed for synergistic PTT and chemotherapy with infrared thermal (IRT) imaging of cancer cells. The product shows no/low cytotoxicity, strong near‐infrared (NIR) optical absorption, high photothermal conversion capacity, and stability. Utilizing the prominent photothermal effect, high‐contrast IRT imaging and efficient photothermal killing effect on cancer cells are achieved upon NIR laser irradiation. Moreover, the successful mesoporous silica coating of the Bi2Se3@mSiO2‐PEG NPs cannot only largely improve the stability but also endow the NPs high drug loading capacity. As a proof‐of‐concept model, doxorubicin (DOX) is successfully loaded into the NPs with rather high loading capacity (≈50.0%) via the nanoprecipitation method. It is found that the DOX‐loaded NPs exhibit a bimodal on‐demand pH‐ and NIR‐responsive drug release property, and can realize effective intracellular drug delivery for chemotherapy. The synergistic thermo‐chemotherapy results in a significantly higher antitumor efficacy than either PTT or chemotherapy alone. The work reveals the great potential of such core–shell NPs as a multifunctional drug‐delivery nanosystem for thermo‐chemotherapy.  相似文献   

7.
A nanostructured and high conductive cupric oxide (CuO NPs) with hierarchical CeO2 sheets-like structure was synthesized by a facile sonochemical approach. Furthermore, CuO/CeO2 nanostructure is synthesized by high-intensity ultrasonic probe (Ti-horn, 50 kHz and 100 W) at ambient air. Moreover, the synthesized CuO/CeO2 material was characterized by various analytical techniques including FESEM, EDX, XRD and electrochemical methods. Then, the synthesized CuO/CeO2 composite was applied for the electrocatalytic detection of dopamine using CV and DPV techniques. In addition, the CuO/CeO2 modified electrode has good electrocatalytic performance with high linear range from 0.025 to 98.5 µM towards the determination of dopamine drug and high sensitivity of the CuO/CeO2 modified drug sensor was calculated as 16.34 nM and 4.823 μA·µM−1·cm−2, respectively. Moreover, a repeatability, reproducibility and stability of the CuO@CeO2 mixture modified electrode were analyzed towards the determination of dopamine biomolecule. Interestingly, the real time application of CuO@CeO2 modified electrode was established in different serum and drug samples.  相似文献   

8.
The facile hydrothermal synthesis of polyethyleneimine (PEI)‐coated iron oxide (Fe3O4) nanoparticles (NPs) doped with Gd(OH)3 (Fe3O4‐Gd(OH)3‐PEI NPs) for dual mode T1‐ and T2‐weighted magnetic resonance (MR) imaging applications is reported. In this approach, Fe3O4‐Gd(OH)3‐PEI NPs are synthesized via a hydrothermal method in the presence of branched PEI and Gd(III) ions. The PEI coating onto the particle surfaces enables further modification of poly(ethylene glycol) (PEG) in order to render the particles with good water dispersibility and improved biocompatibility. The formed Fe3O4‐Gd(OH)3‐PEI‐PEG NPs have a Gd/Fe molar ratio of 0.25:1 and a mean particle size of 14.4 nm and display a relatively high r2 (151.37 × 10?3m ?1 s?1) and r1 (5.63 × 10?3m ?1 s?1) relaxivity, affording their uses as a unique contrast agent for T1‐ and T2‐weighted MR imaging of rat livers after mesenteric vein injection of the particles and the mouse liver after intravenous injection of the particles, respectively. The developed Fe3O4‐Gd(OH)3‐PEI‐PEG NPs may hold great promise to be used as a contrast agent for dual mode T1‐ and T2‐weighted self‐confirmation MR imaging of different biological systems.  相似文献   

9.
In this study, we developed a facile and benign green synthesis approach for the successful fabrication of well-dispersed urchin-like Au@Pt core–shell nanoparticles (NPs) using gallic acid (GA) as both a reducing and protecting agent. The proposed one-step synthesis exploits the differences in the reduction potentials of AuCl4 and PtCl62−, where the AuCl4 ions are preferentially reduced to Au cores and the PtCl62− ions are then deposited continuously onto the Au core surface as a Pt shell. The as-prepared Au@Pt NPs were characterized by transmission electron microscope (TEM); high-resolution transmission electron microscope (HR-TEM); scanning electron microscope (SEM); UV-vis absorption spectra (UV-vis); X-ray diffraction (XRD); Fourier transmission infrared spectra (FT-IR). We systematically investigated the effects of some experimental parameters on the formation of the Au@Pt NPs, i.e., the reaction temperature, the molar ratios of HAuCl4/H2PtCl6, and the amount of GA. When polyvinylpyrrolidone K-30 (PVP) was used as a protecting agent, the Au@Pt core–shell NPs obtained using this green synthesis method were better dispersed and smaller in size. The as-prepared Au@Pt NPs exhibited better catalytic activity in the reaction where NaBH4 reduced p-nitrophenol to p-aminophenol. However, the results showed that the Au@Pt bimetallic NPs had a lower catalytic activity than the pure Au NPs obtained by the same method, which confirmed the formation of Au@Pt core–shell nanostructures because the active sites on the surfaces of the Au NPs were covered with a Pt shell.  相似文献   

10.
Metal oxide nanoparticles (NPs) are increasingly used for different purposes, showing a potential risk on human health. The analysis of the interaction of these metal oxide NPs with blood components is a crucial step in the characterization of their biocompatibility, but information available of comparative studies with several doses and different metal oxide NPs is really scarce. In this study, six different metal oxide NPs (TiO2, CeO2, Al2O3, Y2O3, and two different types of ZnO NPs) at different concentrations are used, and their potential adverse effects on blood are determined. Both, prothrombin time (PT) and activated partial thromboplastin time (aPTT), are assessed to understand particle influence on the plasma coagulation cascade. Additional hematocompatibility tests include assessment of thrombin coagulation time, platelet aggregation, leukocyte procoagulant activity (PCA), hemolysis, and complement activation. The results demonstrate that only the ZnO and TiO2 NPs affect the coagulation cascade by increasing the aPTT in a dose‐dependent manner. Moreover, ZnO NPs increase PT, while TiO2 NPs induce a decrease in the PT. In addition to affecting coagulation time, ZnO NPs also induce platelet aggregation and leukocyte PCA. All tested metal oxide NPs do not affect hemolysis and complement activation.  相似文献   

11.
The present study describes the green method for the preparation of chitosan loaded with silver nanoparticles (CS‐AgNPs) in the presence of 3 different extracted essential oils. The essential oils play dual roles as reductant and capping agents. The reducing power and DPPH (2,2‐diphenyl‐1‐picrylhydrazyl) assay for the 3 essential oils—Thymus syriacus (T), wild mint (M), and rosemary (R)—have been reported. The preparation of CS‐AgNPs was performed by 2 steps. The 3 previously extracted essential oils have been used as reducing and capping agent in the first step, while in the second step, silver nanoparticles were integrated in chitosan. The integration of AgNPs in the structure of chitosan was confirmed by ultraviolet‐visible, Fourier transform infrared spectroscopy, scanning electron microscopy techniques, and energy dispersive X‐ray. Surface plasmon resonance confirmed the formation of CS‐AgNPs with maximum absorbance at λmax between 405 ‐ 410 and 410 ‐ 430 nm for colloidal and films of CS‐AgNPs, respectively. The intensity of bands at 3408 cm?1 in the fourier transform infrared spectroscopy measurements was decreased substantially and shifted slightly to lower frequency (?υ = 43 cm?1). Scanning electron microscopy shows a spherical morphology of AgNPs with size of 62 nm for both colloidal and film samples, and energy dispersive X‐ray analysis shows peaks confirming AgNPs formation.  相似文献   

12.
Detection of environmental pollutant and health hazardous, nitrogen dioxide (NO2) is reported using nanostructured CuO particulates (NPs). Powder X-ray diffraction and field emission scanning electron microscopy were used to probe crystalline phase and morphological details, respectively. Small crystallites of ∼10–12 nm and a strain of 4% were found in the leafy structure of CuO. Raman studies further supported the presence of nanosized CuO phase. This is the first instance of utilizing CuO NPs to detect 5 ppm of NO2 even at a low operating temperature of 50 °C. The highest sensitivity for NO2 was observed at 150 °C, for the first time, in CuO NPs. A low activation energy of 0.18 eV was found for sensing process. The CuO NPs sensor responded to NO2 within a few seconds and recovered totally under a minute. The kinetics of the NO2 gas adsorption on the CuO film surface was described following the Elovich model.  相似文献   

13.
A peculiar nanostructure of encapsulation of SnO2/Sn nanoparticles into mesoporous carbon nanowires (CNWs) has been successfully fabricated by a facile strategy and confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high‐resolution TEM (HRTEM), X‐ray diffraction (XRD), BET, energy‐dispersive X‐ray (EDX) spectrometer, and X‐ray photoelectron spectroscopy (XPS) characterizations. The 1D mesoporous CNWs effectively accommodate the strain of volume change, prevent the aggregation and pulverization of nanostructured SnO2/Sn, and facilitate electron and ion transport throughout the electrode. Moreover, the void space surrounding SnO2/Sn nanoparticles also provides buffer spaces for the volumetric change of SnO2/Sn during cycling, thus resulting in excellent cycling performance as potential anode materials for lithium‐ion batteries. Even after 499 cycles, a reversible capacity of 949.4 mAh g?1 is retained at 800 mA g?1. Its unique architecture should be responsible for the superior electrochemical performance.  相似文献   

14.
MCM-41 mesoporous silica has been functionalized with aromatic carboxylic acids salicylic acid (Sal) and 2-hydroxyl-3-methylbenzoic acid (HMBA) through co-condensation approach of tetraethoxysilane (TEOS) in the presence of the cetyltrimethylammonium bromide (CTAB) surfactant as a template. Organic ligands salicylic acid or 2-hydroxyl-3-methylbenzoic acid grafted to the coupling agent 3-(triethoxysilyl)-propyl isocyanate (TEPIC) was used as the precursor for the preparation of an organic–inorganic hybrid materials. Novel organic–inorganic mesoporous luminescent hybrid containing Ln3+ (Tb3+, Eu3+) complexes covalently attached to the functionalized ordered mesoporous MCM-41, which were designated as Ln-Sal-MCM-41 and Ln-HMBA-MCM-41, respectively, were obtained by sol–gel process. The luminescence properties of these resulting materials were characterized in detail, and the results reveal that luminescent mesoporous materials have high surface area, uniformity in the mesopore structure and good crystallinity. Moreover, the mesoporous material covalently bonded Tb3+ complex (Tb-Sal-MCM-41 and Tb-HMBA-MCM-41) exhibit the stronger characteristic emission of Tb3+ and longer lifetime than the corresponding Eu-containg materials Eu-Sal-MCM-41 and Eu-HMBA-MCM-41 due to the triplet state energy of modified organic ligands Sal-TEPIC and HMBA-TEPIC match with the emissive energy level of Tb3+ very well. In addition, the luminescence lifetime and emission quantum efficiency of 5D0 Eu3+ excited state also indicates the efficient intramolecular energy transfer process in Tb-SAL-MCM-41 and Tb-HMBA-MCM-41.  相似文献   

15.
A facile and novel way was reported here for the synthesis of hydrophobic Ag nanoparticles (NPs), using AgNO3, tri-n-octylphosphine (TOP) and sulfur (S) powder in process. TOP was used as solvent, reducing agent and stabilizer. S could chelate with excessive TOP to form trioctylphosphine sulfide (TOPS), which served as second capping agent. The hydrophobic Ag NPs could be transformed into hydrophilic state through ligand exchange. Furthermore, surface-enhanced Raman scattering (SERS) spectra of 4-aminothiophenol (4-ATP) were obtained on the hydrophobic and hydrophilic Ag NPs modified substrates, indicating that the as-synthesized Ag NPs had great potential for high sensitive optical detection applications.  相似文献   

16.
Polydopamine (PDA) preserves universal coating and metal‐binding ability, and is suitable for application in synthesizing multifunctional agents. Herein, utilizing mesoporous silica assisted deposition to enhance both heterogeneous nucleation and loading amounts of PDA, the magnetic resonance (MR) T1 component (PDA‐Fe3+) and MR T2/computed tomography (CT)/multiphoton luminescence (MPL) component (FePt) have been successfully integrated in aqueous solution. This four‐in‐one (T1, T2, CT, MPL) imaging nanocomposite, FePt@mSiO2 @PDA‐polyethylene glycol (PEG), demonstrated its multi‐imaging power both in vitro/in vivo. According to our in vitro/in vivo results, FePt@mSiO2@PDA‐PEG reveals water‐content‐dependent property in T1 MR imaging, which suggests the necessity of having dual‐modal MR ability in a single particle for the precision diagnosis. Most importantly, this dual (T1,T2)‐MRI/CT contrast agent is demonstrated complementary to each other in the in vivo testing. PDA coated mesoporous silica also offers an advantage of delayed degradation that prevents adverse effects caused by silica fragments before excretion. The potential of this nanocomposites in both drug carrier and photothermal agent was further evaluated by using doxorubicin and monitoring solution temperature after irradiating 808 nm continuous‐wave, respectively The merits of controlled polymerization, enhanced PDA loading, and biofavorable degradation make this methodology promising to other nanoparticle@mSiO2 for a wide range of bioapplications.  相似文献   

17.
Development of multifunctional nanoprobes for tumor diagnosis is extremely important in the field of molecular imaging. In this study, the facile synthesis of lactobionic acid (LA)‐targeted superparamagnetic iron oxide (Fe3O4) nanoparticles (NPs) with ultrahigh relaxivity for targeted magnetic resonance (MR) imaging of an orthotopic hepatocellular carcinoma (HCC) is reported. Polyethyleneimine (PEI)‐stabilized Fe3O4 NPs prepared via a mild reduction route are sequentially coupled with fluorescein isothiocyanate and polyethylene glycol‐LA (LA‐PEG‐COOH) segment, followed by acetylation of the remaining PEI surface amines. The formed LA‐targeted Fe3O4 NPs are thoroughly characterized. It is shown that the developed multifunctional LA‐targeted Fe3O4 NPs are colloidally stable and water‐dispersible, display an ultrahigh r 2 relaxivity (579.89 × 10?3 m ?1 s?1) and excellent hemocompatibility and cytocompatibility in the given concentration range, and can target HepG2 cells overexpressing asialoglycoprotein receptors as confirmed by in vitro cellular uptake assay, flow cytometry, and confocal microscopy. Most strikingly, the developed multifunctional LA‐targeted Fe3O4 NPs can be used as a nanoprobe for targeted MR imaging of HepG2 cells in vitro and an orthotopic tumor model of HCC in vivo. With the ultrahigh r 2 relaxivity and the versatile PEI amine‐mediated conjugation chemistry, a range of different Fe3O4 NP‐based nanoprobes may be developed for theranostics of different types of cancer.  相似文献   

18.
Divalent state europium nanocrystals (EuII NCs) have tremendous number of applications such as biological detection, solar cells, medical imaging, and so on. Here, a ready synthetic one‐pot approach to prepare dual blue fluorescent‐magnetic EuCl2 NCs is reported. EuCl3 is reduced by the reducing agent urea, while the oleic acid and oleyl amine are used as the capping ligand. A serial of analysis, such as X‐ray photoelectron spectroscopy, electron spin resonance, and zero‐field cooling magnetization curve/field cooling magnetization curve are performed to confirm the successful reduction of EuCl2. It is novel that the morphology and size of produced EuCl2 NCs could be adjusted efficiently by the reducing agent urea, including rod shaped, wire shaped, and fiber shaped. The mechanism of controlling the size and morphology of synthetic EuCl2 NCs by the urea content is discussed in detail. What is more, it has been demonstrated that in this one‐pot method the homogeneous and complete nucleation needs to perform slowly in high temperature reaction stage, and then the uniformed crystals are gradually formed during the slow cooling process. That is an appealing strategy for tunable design and synthesis of multifunctional EuII NCs.  相似文献   

19.
The potential for using hydroxyl radical (OH?) reactions catalyzed by iron oxide nanoparticles (NPs) to remediate toxic organic compounds was investigated. Iron oxide NPs were synthesized by controlled oxidation of iron NPs prior to their use for contaminant oxidation (by H2O2 addition) at near-neutral pH values. Cross-linked polyacrylic acid (PAA) functionalized polyvinylidene fluoride (PVDF) microfiltration membranes were prepared by in situ polymerization of acrylic acid inside the membrane pores. Iron and iron oxide NPs (80–100 nm) were directly synthesized in the polymer matrix of PAA/PVDF membranes, which prevented the agglomeration of particles and controlled the particle size. The conversion of iron to iron oxide in aqueous solution with air oxidation was studied based on X-ray diffraction, Mössbauer spectroscopy and BET surface area test methods. Trichloroethylene (TCE) was selected as the model contaminant because of its environmental importance. Degradations of TCE and H2O2 by NP surface generated OH? were investigated. Depending on the ratio of iron and H2O2, TCE conversions as high as 100 % (with about 91 % dechlorination) were obtained. TCE dechlorination was also achieved in real groundwater samples with the reactive membranes.  相似文献   

20.
Single crystal Al2O3 samples were implanted with 45 keV Cu ion implantation at a dose of 1 × 1017 ions/cm2, and then subjected to furnace annealing in vacuum or with a flow of oxygen gas. Various techniques, such as ultraviolet-visible spectroscopy, X-ray diffraction spectroscopy and atomic force microscopy, have been used to investigate formation of Cu NPs and their evolution. Our results clearly show that the evolution of Cu NPs depends strongly on annealing atmosphere in the temperature range up to 600 °C. Annealing in vacuum only gives rise to a slight change in the size of Cu NPs. No evidence for oxidization of Cu NPs has been revealed. Remarkable modifications in Cu NPs, including the size increase and the effective transformation into CuO NPs, have been observed for the samples annealed at oxygen atmosphere. The results have been tentatively discussed in combination with the role of oxygen from atmosphere in diffusion of Cu atoms towards the surface and its interactions with Cu NPs during annealing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号