首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
In an attempt to synthesize antibacterial agents effective against gram‐positive and gram‐negative bacteria, the efficient synthesis of novel bis‐azetidinones ( 3a–j ) has been established. Thus, cycloaddition reaction of substituted bis‐imines with chloroacetylchloride under microwave irradiation in the presence of zeolite yielded bis‐azetidinones ( 3a–j ). Structures of the synthesized compounds have been elucidated on the basis of their elemental analysis and spectral data (IR, 1H‐NMR, 13C‐NMR, and mass spectra). The synthesized bis‐azetidinones were screened for their antibacterial activity against five microorganisms: Bacillus subtilis, Proteus vulgaris, Staphylococcus aureus, Klebsiella pneumoniae, and Escherichia coli. They were found to exhibit good to moderate antibacterial activity.  相似文献   

2.
A series of new 1,3,4‐oxadiazole/thiadiazole and 1,2,4‐triazole derivatives have been synthesized starting from 2‐aryl‐4‐methylthiazol‐5‐carbohydrazides and isonicotinic acid hydrazide. All the newly synthesized compounds were characterized by IR, 1H NMR, 13C NMR, and mass spectrometry. The synthesized compounds were screened for their antibacterial and antifungal activity, assessed as growth inhibition diameter. Some of them showed good antibacterial activity against gram positive Staphylococcus aureus, while the antibacterial activity against Listeria monocytogenes, Escherichia coli, and Salmonella typhymurium and antifungal activity against Candida albicans was modest. None of the tested compounds showed inhibitory activity against gram positive bacteria Enterococcus faecalis and Bacillus cereus and against gram negative bacteria Pseudomonas aeruginosa.  相似文献   

3.
《中国化学会会志》2017,64(10):1164-1171
A green biogenic, nontoxic, high‐yielding synthetic method is introduced for the synthesis of silver nanoparticles (AgNPs) using ionic‐liquid‐based, microwave‐assisted extraction (ILMAE) from Polygonum minus . The aqueous ionic liquid (1‐butyl‐3‐methylimidazolium chloride [BMIM]Cl)‐based plant extract was used as reducing agent to reduce silver ions to AgNPs. The synthesis of AgNPs was confirmed by UV–visible spectrophotometry. Fourier transforms infrared (FTIR) spectra showed that the plant bioactive compounds capped the AgNPs. The particle size and morphology of Ag NPs were characterized by dynamic light scattering (DLS) and field emission scanning electron microscopy (FESEM), respectively. Elemental analysis was carried out by energy‐dispersive X‐ray (EDX) spectroscopy. Photodegradation studies showed that the AgNPs degraded 98% of methylene blue in 12 min.  相似文献   

4.
Well‐dispersed silver nanoparticles were successfully fabricated within poly[(N‐isopropylacrylamide)‐co‐(acrylic acid)] [P(NIPAM‐co‐AA)] microgel particles which were synthesized with different cross‐linking densities. Their structures were studied by field‐emission scanning electron microscopy, transmission electron microscopy, UV‐vis spectroscopy, X‐ray diffraction and FT‐IR spectroscopy. The interactions between the microgel particles and the incorporated silver nanoparticles were investigated by X‐ray photoelectron spectroscopy. The results revealed that there was charge transfer from the carbonyl groups of the microgel particles to the silver nanoparticles. Moreover, as the diameter of the AgNPs decreases, the charge‐transfer efficiency increases accordingly. The P(NIPAM‐co‐AA)/AgNPs hybrid microgel particles were thermoresponsive and their behavior completely reversible with several heating/cooling cycles.

  相似文献   


5.
A series of water‐soluble N‐substituted poly(alkylanilines) (PNAAs) have been enzymatically synthesized with a variety of groups, from methyl to n‐butyl, such as poly(N‐methylaniline), poly(N‐ethylaniline), poly(N‐butylaniline) and poly(N‐phenylethanolamine). The syntheses were made in the presence of poly(4‐sodium styrene sulfonate) (SPS) as a template and horseradish peroxidase (HRP) as a catalyst. The size and type of the groups have a great effect on the properties of the final polymers. UV‐vis spectroscopy and cyclic voltammetry measurements confirmed that for enzymatically synthesized PNAAs/SPS complexes, the electroactivity increased with the bulkiness of the substituents. These polymers have been studied in the doped and undoped states by FT‐IR and UV‐vis spectroscopy. Also these polymers show multiple and reversible optical transitions that can be ascribed to the formation of polaron and bipolaron states. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
A series of N‐containing heterocyclic compounds have been synthesized using approaches such as the well‐known Knorr synthesis, and a facile N‐alkylation method. This series of compounds includes pyrazole derivatives, tris(2‐benzimidazolylmethyl)amine derivatives, and “pincer” ligands. Characterization methods include 1H NMR, FT‐IR, CHN analyses, UV‐vis spectroscopy, and fluorimetry, while X‐ray crystal structures are reported for most of the compounds. The crystallographic results affirm a 13C NMR method for isomer assignment of substituted pyrazoles.  相似文献   

7.
In a biological process where the herbal tea (Stachys lavandulifolia) aqueous extract was applied as a capping and reducing agent, nanoparticles (NPs) of silver (Ag) were synthesized. These AgNPs were characterized using Fourier transform‐infrared spectroscopy, field emission‐scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, transmission electron microscopy and ultraviolet–visible spectroscopy. The synthesized AgNPs had great cell viability dose‐dependently [investigating the effect of the plant on human umbilical vein endothelial cell line] and indicated this method was non‐toxic. In this study, the 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) free radical scavenging test was carried out to examine antioxidant properties, which revealed similar antioxidant properties for AgNPs and butylated hydroxytoluene. Agar diffusion tests were applied to determine the antibacterial characteristics. The macro‐broth tube test was run to determine minimum inhibitory concentration. All data of antibacterial and cutaneous wound‐healing examinations were analyzed by SPSS 21 software (Duncan post hoc test). AgNPs showed higher antibacterial property than all standard antibiotics (p ≤ 0.01). Also, AgNPs prevented the growth of all bacteria at 2–8 mg/ml concentrations and destroyed them at 2–16 mg/ml concentrations (p ≤ 0.01). For the in vivo experiment, after creating the cutaneous wound, the rats were randomly divided into six groups: untreated control; treatment with Eucerin basal ointment; treatment with 3% tetracycline ointment; treatment with 0.2% AgNO3 ointment; treatment with 0.2% S. lavandulifolia ointment; and treatment with 0.2% AgNPs ointment. These groups were treated for 10 days. For histopathological and biochemical analysis of the healing trend, a 3 × 3‐cm section was prepared from all dermal thicknesses at day 10. Use of AgNPs ointment in the treatment groups substantially reduced (p ≤ 0.01) the wound area, total cells, neutrophil, macrophage and lymphocyte, and remarkably raised (p ≤ 0.01) the wound contracture, hydroxyl proline, hexosamine, hexuronic acid, fibrocyte and fibrocytes/fibroblast rate compared with other groups. Seemingly, AgNPs can be used as a medical supplement owing to their non‐cytotoxic, antioxidant, antibacterial and cutaneous wound‐healing properties.  相似文献   

8.
Monofunctional benzoxazine with ortho‐methylol functionality has been synthesized and highly purified. The chemical structure of the synthesized monomer has been confirmed by 1H and 13C nuclear magnetic resonance spectroscopy (NMR), Fourier transform infrared spectroscopy (FT‐IR) and elemental analysis. One‐dimensional (1D) 1H NMR is used with respect to varied concentration of benzoxazines to study the specific nature of hydrogen bonding in both ortho‐methylol functional benzoxazine and its para counterpart. The polymerization behavior of benzoxazine monomer has been also studied by in situ FT‐IR and differential scanning calorimetry, experimentally supporting the polymerization mechanism of ortho‐methylol functional benzoxazine we proposed before. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3635–3642  相似文献   

9.
The present study investigates the green synthesis of stable silver nanoparticles using Juniperus communis leaf aqueous extract at room temperature. Synthesized silver nanoparticles (AgNPs) were characterized with different techniques such as UV–vis spectroscopy, Fourier transforms infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), Scanning electron microscopy (SEM-EDAX) and electrochemical method. Photocatalytic and anti-bacterial activities of synthesized AgNPs are evaluated based on the obtained result showed an efficient inhibition growth for gram negative P. Aeruginosa, E. Coli, and gram positive bacteria S.aureus. The AgNPs exhibited an excellent photocatalytic activity toward the degradation of methylene blue both indoor and outdoor, under sunlight, an efficiency of 95% was achieved. As an easy and environmentally friendly process, AgNPs based on Juniperus communis leaf extract could be applied for the degradation of pollutants and wastewater treatment.  相似文献   

10.
In the present work, for the first time we have designed a novel approach for the synthesis of N‐benzyl‐N‐aryl‐5‐amino‐1H‐tetrazoles using reduced graphene oxide (rGO) decorated with Cu‐Ni bimetallic nanoparticles (NPs). In situ synthesis of Cu/Ni/rGO nanocomposite was performed by a cost efficient, surfactant‐free and environmentally benign method using Crataegus azarolus var. aronia L. leaf extract as a stabilizing and reducing agent. Phytochemicals present in the extract can be used to reduce Cu2+ and Ni2+ ions and GO to Cu NPs, Ni NPs and rGO, respectively. Analyses by means of FT‐IR, UV–Vis, EDS, TEM, FESEM, XRD and elemental mapping confirmed the Cu/Ni/rGO formation and also FT‐IR, NMR, and mass spectroscopy as well as elemental analysis were used to characterize the tetrazoles. The Cu/Ni/rGO nanocomposite showed the superior catalytic activity for the synthesis of N‐benzyl‐N‐aryl‐5‐amino‐1H‐tetrazoles within a short reaction time and high yields. Furthermore, this protocol eliminates the need to handle HN3.  相似文献   

11.
The Fe3O4 magnetic particles were modified with 1,10‐phenanthroline‐5,6‐diol (Phen) and the related Mn complex (Fe3O4@Phen@Mn) synthesized as a heterogeneous catalyst to be used for the one‐pot three‐component synthesis of various tetrazoles. The catalysts were characterized by several methods, such as the elemental analysis, FT‐IR, X‐ray powder diffraction, dispersive X‐ray spectroscopy, scanning electron microscopy, transmission electron microscopy, dynamic light scattering, thermogravimetric‐differential thermal analysis, vibrating sample magnetometer and X‐ray photoelectron spectroscopy. In addition, the antioxidant and antibacterial activities of the catalyst and its Phen ligand were in vitro screened with 2,2‐diphenyl‐1‐picrylhydrazyl by free radical scavenging methods. Results showed that the synthesized compounds possess strong antioxidant activity (IC50; 0.172  ±  0.005 mg ml?1) as well as a good antibacterial potential in comparison to standards.  相似文献   

12.
Chitosan‐carboxymethyl cellulose (CMC) full polysaccharide membrane was prepared by cross‐linking of chitosan with CMC dialdehyde and subsequent reductive amination. CMC dialdehyde molecule was prepared by periodate oxidation of CMC and then applied as a cross‐linking agent to form a new membrane network. The properties of oxidized CMC were investigated by various methods such as Fourier transform infrared (FT‐IR) spectroscopy, 1H NMR spectroscopy, and viscosity test. Then, novel chitosan‐CMC silver nanocomposite was prepared using chitosan‐CMC as a carrier. The structure of the chitosan‐CMC membrane and the silver nanocomposite were confirmed by FT‐IR spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). TEM images indicate that the chitosan‐CMC nanocomposite comprises silver nanoparticles with diameters in the range of about 5–20 nm. The antibacterial studies of the nanocomposite were also evaluated. The chitosan‐CMC silver nanocomposite demonstrates good antibacterial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
A tridentate Schiff base ligand, (E)‐3‐((2‐hydroxy‐3‐methoxybenzylidene)amino)‐2‐methylquinazolin‐4(3H)‐one [HL], and its mixed‐ligand Ni(II) complex [Ni(L)(imi)], were synthesized and fully characterized using elemental analysis, FT‐IR, UV–Vis and 1HNMR spectroscopy techniques. The structure of the synthesized ligand and complex was determined with single crystal X‐ray diffraction method. In the complex, a square planner geometry was observed around the Ni(II) central atom coordinated with the donor atoms of the Schiff base ligand and one nitrogen of imidazole group. In addition, the catalytic activity of the complex on the three‐component condensation of hydrazine hydrate with phthalic anhydride and dimedone to obtain 2H–indazolo[2,1‐b]phthalazine‐triones was investigated. Furthermore, in‐vitro antimicrobial studies were performed that indicated the great antibacterial activities of the Ni(II) complex against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Bacillus cereus bacteria.  相似文献   

14.
Merrifield Resin was functionalized with metformine and applied as a solid support to immobilize the CuCl2. The Ps‐Met/CuCl2 was characterized by several techniques including Fourier transform infrared (FTIR), field emission scanning electron microscopy (FESEM), energy‐dispersive X‐ray spectroscopy (EDX), wavelength‐dispersive X‐ray spectroscopy (WDX) and inductively coupled plasma (ICP). The Ps‐Met/CuCl2 was used as an efficient recyclable solid nanocatalyst for N‐arylation of indole and aniline through coupling reactions of Ullmann‐type C‐N. The advantages of this method are easy workup, improved yields, and simple recovery via filtration. Ultimately, the Ps‐Met/CuCl2 antibacterial property was examined against two bacteria (Staphylococcus aureus (Staph. aureus) and Escherichia coli (E. coli)) and indicated its antibacterial performance against gram negative (E. coli) bacteria and gram positive (Staph. aureus).  相似文献   

15.
Nanorods of a diorganotin phosphonic diamide with formula [Sn(CH3)2(Cl)2(L)2]{L = C6H5(O)P(NHC6H11)2} have been synthesized by sonochemical processes at different concentrations without any surfactant or capping agent. The structure and morphology of the prepared complex were investigated by using SEM‐EDAX, XRD, DLS, UV–Vis and FT‐IR spectroscopy. Nanoparticles with well‐defined rod shapes and sizes in the range 30–40 nm have been obtained. Also bulk form of the titled complex was synthesized and characterized by 1H, 13C, 31P, 119Sn NMR, UV–Vis and FT‐IR spectroscopy and compared with its nano‐size. The thermal stabilities at bulk and nano‐size scale have been studied by thermal gravimetric (TG) and differential thermal analysis (DTA). Further, SnP2O7 nanoparticles were synthesized by direct calcination at 730 °C under air atmosphere and characterized using XRD, SEM, and TEM. From XRD measurements, we determined the mean size of the crystallites about 27.4 nm. It is found that the size and morphology of the tin pyrophosphate nano‐structures are dependent upon the particles size of precursor compound as well. Two different forms of metal coordination compound (1a, 1b) and the corresponding ligand (L) were screened for their antibacterial activity against the selected Gram‐positive and Gram‐negative bacteria, showing bactericidal activity for complexes 1a and 1b. In vitro cytotoxicity of compounds was studied against human carcinoma cell lines, A2780 (ovarian cancer) and PC‐3 (prostate cancer). Results indicated that 1a and 1b possess relatively strong cytotoxic activity against cancer cells with IC50 values ranging from 93.2 to 376.2 μM for two exposure time (24 and 48 h).  相似文献   

16.
Uniform SiO2 nanoparticles were successfully prepared from Equisetum arvense obtained from the north‐east of Iran. Then, surface modification of the extracted nanoparticles was performed with a methanol solution of H3PW12O40 via wet impregnation method. The prepared nanocatalyst was characterized by XRD, FESEM, ICP, UV–Vis, and FT‐IR spectroscopy. The supported heterogeneous nanocatalyst was successfully applied as a Lewis/Bronsted acid catalyst in the synthesis of a series of substituted 4H–chromenes via condensation of aromatic aldehydes, malononitrile, and 4‐hydroxycoumarin under solventless conditions with fine yields in appropriately short times.  相似文献   

17.
A novel phthalonitrile derivative bearing 2‐isopropyl‐6‐methylpyrimidin‐4‐yloxy substituents at peripheral positions was synthesized by a nucleophilic substitution reaction. Metallophthalocyanines were obtained from the reaction of the novel phthalonitrile with metal Zn, Cu, Co, and Ni salts. The characterization of the compounds was performed using elemental analysis as well as UV/Vis, FT‐IR, and 1H‐NMR spectroscopy. The aggregation behaviors of phthalocyanine complexes were also investigated. These metallophthalocyanines do not show any aggregation behavior between 10–4–10–6 M concentration range in THF. The antioxidant activities of the synthesized compounds were evaluated using three different tests: 2, 2‐diphenyl‐1‐picrylhydrazyl (DPPH) radical scavenging, metal chelating activity, and reducing power assays. All the compounds exhibited various antioxidant activities. In addition, antimicrobial activity of the compounds was tested over four gram positive and two gram negative bacteria. Moreover, the ground‐state geometries of the complexes were optimized using density functional theory (DFT) methods at B3LYP/6‐31G(d, p) level in order to obtain information about the 3D arrangements and electronic structure.  相似文献   

18.
Six complexes of Zn(II), Cd(II) and Hg(II) with sulphur containing Schiff base ligand, 1,4‐bis((1H‐pyrrol‐2‐yl)methylene)thiosemicarbazide in 1:1 and 1:2 ratio has been synthesized. Complexes were characterized by molar conductance measurement, elemental analyses, FT‐IR, 1H‐NMR, and FAB/ESI‐Mass. The complexes were used as a single source precursor for the synthesis of ZnS/CdS/HgS nanoparticles by their thermal decomposition in the presence of different surfactants. The precursor: surfactant ratio and temperature plays important role in determining the size of the nanoparticles. The size and morphology of nanoparticles has been ascertained by UV‐Vis spectroscopy, XRD measurements and Transmission Electron Microscopy (TEM). Schiff base, complexes and nanoparticles were tested for antibacterial activity and MIC values against E. coli. The complexes were found more potent than the corresponding Schiff bases and nanoparticles.  相似文献   

19.
The degradation pattern of a series of low band gap PCPDTBT polymers under thermal stress is investigated by in situ UV–vis and FT‐IR techniques combined with thermal degradation analysis. Thermogravimetric analysis is used to predetermine the decomposition intervals, revealing that thermolysis occurs in two stages. TG‐TD‐GC/MS shows that loss of the alkyl side chains predominantly happens within the first temperature regime and degradation of the polymer backbone occurs thereafter. UV–vis spectroscopy is used to monitor the evolution of the optical properties upon heating, reflecting the thermal stability of the conjugated backbone, whereas FT‐IR spectroscopy is applied to evaluate the chemical changes under thermal stress, with an emphasis on the polymer periphery. The influence of the side chains and possible defects, dependent on the synthesis protocol applied, on the thermal stability of the final polymers is discussed and is related to the application of said materials in organic photovoltaics. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4912–4922  相似文献   

20.
Poly(N‐vinylcaprolactam) (PNVCL) star‐shaped polymers with four arms and carboxyl end groups were synthesized by reversible addition–fragmentation chain transfer (RAFT) polymerization of N‐vinylcaprolactam (NVCL) employing a tetrafunctional trithiocarbonate as an R‐RAFT agent. The resulting star polymers were characterized using 1H NMR, FT‐IR, gel permeation chromatography (GPC), and UV–vis. Molecular weight of star polymers were analyzed by GPC and UV–vis being observed that the values obtained were very similar. Furthermore, the thermosensitive behavior of the star polymers was studied in aqueous solution by measuring the lower critical solution temperature by dynamic light scattering. Star‐shaped PNVCL were chain extended with ethyl‐hexyl acrylate (EHA) to yield star PNVCL‐b‐PEHA copolymers with an EHA molar content between 4% and 6% proving the living character of the star‐shaped macroCTA. These star block copolymers form aggregates in aqueous solutions with a hydrodynamic diameter ranged from 170 to 225 nm. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2156–2165  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号