共查询到20条相似文献,搜索用时 0 毫秒
1.
Cheng‐Long Wang Jian Wang Fu‐Quan Bai Jie Chen Hong‐Xing Zhang 《International journal of quantum chemistry》2014,114(9):560-567
Three designed metal‐free dyes based on 3‐(10‐butyl‐8‐(methylthio)‐10H‐phenothiazin‐3‐yl)‐2‐cyanoacrylic acid (V5) are investigated by density functional theory (DFT) and time‐dependent DFT to improve the efficiency of V5‐based solar cell devices. We have studied the geometrical structures, excitations, electronic structures, and conduction band shift caused by dye adsorption. The results indicate that the designed dyes have several merits compared with V5 including: (i) smaller energy band gaps and the LUMO closer to conduction band of TiO2; (ii) wider absorption spectra and higher oscillator strength; (iii) larger dipole moment that lead to higher Voc value. Our work suggests that the modification of π‐bridge with diketopyrrolopyrrole unit is very effective for designing novel metal‐free dyes with improved performance for dye‐sensitized solar cells (DSSCs). These findings are expected to provide a bright way to design new efficient metal‐free organic DSSCs. © 2014 Wiley Periodicals, Inc. 相似文献
2.
Y. L. Teng Y. H. Kan Z. M. Su Y. Liao L. K. Yan Y. J. Yang R. S. Wang 《International journal of quantum chemistry》2005,103(6):775-780
The absorption and emission energies for diphenylboron analogs of Alq3 (Ph2Bq) and its methyl substituents (Ph2Bmq) were systematically investigated at the Zerner's intermediate neglect of differential overlap (ZINDO), configuration interaction singles (CIS), and time‐dependent density functional theory (TD‐DFT) levels of theory. The lowest excited‐state geometries were optimized at the ab initio CIS level. The TD‐DFT method provides the most reliable results for the absorption and emission transition energies, compared with other methods. Moreover, the TD‐DFT calculations reliably estimate the changes of absorption and emission λmax values upon methyl substitution, with errors of 1.2% and 1.8%, respectively. The Stokes shifts are well reproduced by TD‐DFT calculations. Various density functional theory methods have been tested and the B3LYP functional clearly seems to be the best choice for this class of compounds. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005 相似文献
3.
Jin‐Yu Lv Yuan‐Ru Guo Dong‐Mei Su Ming‐Jing Zhang Qing‐Jiang Pan 《International journal of quantum chemistry》2016,116(18):1342-1349
Although previously studied [(HOOC)4(TBPor)Ru(NCS)2]2– ( A ; TBPor = tetrabenzoporphrin) avoided the intrinsic π‐stacking aggregation of planar metallophorphryins via incorporating two axial ligands, these isothiocyanato groups are believed to be the weakest part of the sensitizer while operating in dye‐sensitized solar cells (DSSCs). In this work, a series of thiocyanate‐free ruthenium porphyrin complexes featuring with phenyl/substituted‐phenyl axial groups, [(HOOC)4(TBPor)Ru(L′)2]2– (L′ = Ph ( 1 ), PhF2 ( 2 ), PhCl2 ( 3 ), PhBr2 ( 4 ), and PhI2 ( 5 )), have been examined using density functional theory (DFT) and time‐dependent DFT (TD‐DFT). Both analyses of electronic structures and calculations of interaction energies demonstrate that the Ru‐L′ interaction in 1 – 5 is significantly enhanced relative to the Ru‐NCS in A , which will raise chemical stability of the former in DSSCs. Single‐electron oxidation mechanism has been proposed. Oxidation potentials (E0) are increased by 0.2–0.6 V when changing axial groups from NCS to Ph/PhX2. The spin‐orbit coupling (SOC) relativistic effects can be negligible in computing E0 values. TD‐DFT calculations show that 1 – 5 have more intense Q band in the visible region than A does. Taken together, high chemical stability, suitable oxidation potential and expanding absorption spectra would allow for potential applications of the thiocyanate‐free sensitizers in DSSCs. © 2016 Wiley Periodicals, Inc. 相似文献
4.
《Journal of computational chemistry》2018,39(11):685-698
The possibility of dye charge recombination in DSSCs remains a challenge for the field. This consists of: (a) back‐transfer from the TiO2 to the oxidized dye and (b) intermolecular electron transfer between dyes. The latter is attributed to dye aggregation due to dimeric conformations. This leads to poor electron injection which decreases the photocurrent conversion efficiency. Most organic sensitizers are characterized by an Acceptor‐Bridge‐Donor ( A ‐Bridge‐ D ) arrangement that is commonly employed to provide charge separation and, therefore, lowering the unwanted back‐transfer. Here, we address the intermolecular electron transfer by studying the dimerization and photovoltaic performance of a group of A ‐Bridge‐ D structured dyes. Specifically, eight famous sulfur containing π‐bridges were analyzed ( A and D remained fixed). Through quantum mechanical and molecular dynamics approaches, it was found that the formation of weakly stabilized dimers is allowed. The dyes with covalently bonded and fused thiophene rings as Bridges, 6d and 7d as well as 8d with a fluorene, would present high aggregation and, therefore, high probability of recombination processes. Conversely, using TiO2 cluster and surface models, delineated the shortest bridges to improve the adsorption energy and the stability of the system. Finally, the elongation of the bridge up to 2 and 3 units and their photovoltaic parameters were studied. These results showed that all the sensitizers are able to provide similar photocurrent outcomes, regardless of whether the bridge is elongated. © 2017 Wiley Periodicals, Inc. 相似文献
5.
Carolina Caicedo Ana Martínez Ernesto Rivera 《International journal of quantum chemistry》2013,113(9):1376-1383
This research project is focused on molecules that comprise a series of asymmetrically A3B‐type meso‐substituted free‐base porphyrins and their related Zn‐metalloporphyrins. A and B were taken as electron‐donor and electron–acceptor groups. Full geometry optimizations without symmetry constrains were performed with B3LYP/6‐31G(d,P) methodology. Time‐dependent density functional theory calculations of the optimized structures indicate that there is a good agreement with the available experimental results. The highest occupied molecular orbital–lowest occupied molecular orbital (LUMO) gaps (ranging between 2.62 and 2.80 eV) are similar to those reported before for other porphyrins (2.29 eV). Also, the LUMO is situated close to the conduction band of titanium oxide, increasing the possibility of a charge transfer process. As porphyrins may act as electron transfer systems, the electron donor–acceptor capacity of these systems is characterized using two parameters; electrodonating (χ?) and electroaccepting (χ+) electronegativity. The main goal of this investigation is to analyze the electronic structure and the donor–acceptor properties of these porphyrins to see if these compounds could be useful for further applications related to the design of solar cells. © 2012 Wiley Periodicals, Inc. 相似文献
6.
Denis Jacquemin Julien Preat Eric A. Perpète Daniel P. Vercauteren Jean‐Marie André Ilaria Ciofini Carlo Adamo 《International journal of quantum chemistry》2011,111(15):4224-4240
Using time‐dependent density functional theory and the polarizable continuum model, we have simulated the absorption spectra of an extended series of azobenzene dyes. First, we have determined a theoretical level optimal for this important class of dyes, and it turned out that a C‐PCM‐CAM‐B3LYP/6‐311+G(d,p)//C‐PCM‐B3LYP/6‐311G(d,p) approach represents an effective compromise between chemical accuracy and computational cost. In a second stage, we have compared the theoretical and experimental transition energies for 46 n → π☆ and 141 π → π☆ excitations. For the full set, that spans over a 302–565 nm domain, we obtained a mean absolute deviation of 13 nm (0.10 eV) and a linear correlation coefficient of 0.95, illustrating the accuracy of our approach, though some significant outliers pertained. In a last step, the impact of several modifications, that is, trans/cis isomerization, variation of the acidity of the medium and azo/hydrazo tautomerism have been modeled with two functionals. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2010 相似文献
7.
The first‐principles density functional theory (DFT) and its time‐dependent approach (TD‐DFT) are used to characterize the electronic structures and optical spectra properties of five chemically modified fullerenes. It is revealed that the metal fullerene derivatives possess not only stronger absorption bands in visible light regions than organically modified fullerene but also the large energy gaps (ΔES–T > 0.98 eV) between the singlet ground state and the triplet state, which imply their significant aspect of potential candidates as a photosensitizer. We have found that a new metal‐containing bisfullerene complexes (Pt(C60)2), with the extended conjugated π‐electrons, much degenerate orbitals and a uniform electrostatic potential surface, behave more pre‐eminent photosensitizing properties than other examined fullerene derivatives. © 2012 Wiley Periodicals, Inc. 相似文献
8.
《International journal of quantum chemistry》2018,118(7)
The flavonols are natural pigments with multiple colors. They are found ubiquitously in plants and are relevant to flower colors and the UV protection in plants. Their antioxidant, anticancer, and anti‐allergic features attract researchers much attention to explore their potential applications in biological and nanomedical areas. In this study, the interaction mechanism and optical properties of four representative flavonols, on both the surface and confined in the single‐walled boron nitride nanotubes (BNNTs), have been explored comparatively by self‐consistent density‐functional based tight‐binding method (SCC‐DFTB) and density‐functional theory (DFT). The results indicate a stronger binding when flavonols are confined inside the BNNTs. The influence of mutual interaction between flavonols and BNNTs on the excited properties and UV/vis feature of the complex structure was studied by time‐dependent DFT. Due to the interaction of flavonols with BNNTs and the weakness of the intramolecular hydrogen bond, our results indicate a red‐shift of the flavonol spectra when they are outside or inside the tube. The study concludes that the properties of flavonols can be fine‐tuned by the interaction with BNNTs. 相似文献
9.
Davide Ravelli Daniele Dondi Maurizio Fagnoni Angelo Albini Alessandro Bagno 《Journal of computational chemistry》2011,32(14):2983-2987
UV absorption spectra of the Lindqvist polyoxometalate [W6O19]2? were predicted by relativistic time‐dependent density functional theory with several combinations of density functional and basis set. Hybrid functionals with frozen‐core Slater basis sets were found to provide the best agreement with experiment while keeping reasonable computational demand. The approach was extended to [W10O32]4? and [PW12O40]3?, suggesting that it can be applied to the polyoxometalates family. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011 相似文献
10.
For seeking high‐efficiency narrow‐band‐gap donor materials to enhance short‐circuit current density for organic solar cells, a series of oligo‐selenophene (OS) and oligo(3,4‐ethylenedioxyselenophene) (OEDOS) with various chain lengths were designed and characterized using density functional theory (DFT) and time‐dependent DFT calculations. Based on the results, it can be seen that with increasing chain length of the oligomers in both syn‐ and anti‐adding manners, the bond length alternation is decreased which indicates that the π‐electron delocalization is increased. Also, when the chain length is increased the electronic energy gap and the optical energy gap are decreased. It can be concluded that the syn‐(OS)n=10,14,15, anti‐(OS)n=14 and anti‐(OEDOS)n=7–12 oligomers can act as low‐band‐gap polymers. Therefore they can absorb more sunlight based on maximum wavelength (higher than 620 nm). Furthermore, a red shift in the simulated absorption spectra of (OS)n and (OEDOS)n donors is observed. It is found that (OS)n=14,15 with syn configuration of the extended oligomers is the most suitable donor for the design of high‐performance organic solar cells possessing a narrow electronic band gap, high exciton lifetime and broad and intense absorption spectra that cover the solar spectrum leading to complete light‐harvesting efficiency. 相似文献
11.
Tao Liu Bao‐Hui Xia Qing‐Chuan Zheng Xin Zhou Qing‐Jiang Pan Hong‐Xing Zhang 《Journal of computational chemistry》2010,31(3):628-638
Iridium(III) complexes with N‐heterocyclic (NHC) ligands including fac‐Ir(pmb)3 (1), mer‐Ir(pmb)3 (2), (pmb)2Ir(acac) (3), mer‐Ir(pypi)3 (4), and fac‐Ir(pypi)3 (5) [pmb = 1‐phenyl‐3H‐benzimidazolin‐2‐ylidene, acac = acetoylacetonate, pypi = 1‐phenyl‐5H‐benzimidazolin‐2‐ylidene; fac = facial, mer = meridional] were investigated theoretically. The geometry structures of 1–5 in the ground and excited state were optimized with restricted and unrestricted DFT (density functional theory) methods, respectively (LANL2DZ for Ir atom and 6‐31G for other atoms). The HOMOs (highest occupied molecular orbitals) of 1–3 are composed of d(Ir) and π(phenyl), while those of 4 and 5 are contributed by d(Ir) and π(carbene). The LUMOs (lowest unoccupied molecular orbitals) of 1, 2, 4, and 5 are localized on carbene, but that of 3 is localized on acac. The calculated lowest‐lying absorptions with TD‐DFT method based on Perdew‐Burke‐Erzenrhof (PBE) functional of 1 (310 nm), 2 (332 nm), and 3 (347 nm) have MLcarbeneCT/ILphenyl→carbeneCT (MLCT = metal‐to‐ligand charge transfer; ILCT = intraligand charge transfer) transition characters, whereas those of 4 (385 nm) and 5 (389 nm) are assigned to MLcarbeneCT/ILcarbene→carbeneCT transitions. The phosphorescences calculated by TD‐DFT method with PBE0 functional of 1 (386 nm) and 2 (388 nm) originate from 3MLcarbeneCT/3ILphenyl→carbeneCT excited states, but those of 4 (575 nm) and 5 (578 nm) come from 3MLcarbeneCT/3ILcarbene→carbeneCT excited states. The calculated results showed that the carbene and phenyl groups act as two independent chromophores in transition processes. Compared with 1 and 2, the absorptions of 4 and 5 are red‐shifted by increasing the effective π‐conjugation groups near the Ccarbene atom. We predicated that (pmb)2Ir(acac) is nonemissive, because the LUMO of 3 is contributed by the nonemissive acac ligand. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010 相似文献
12.
Davide Presti Frédéric Labat Alfonso Pedone Michael J. Frisch Hrant P. Hratchian Ilaria Ciofini Maria Cristina Menziani Carlo Adamo 《Journal of computational chemistry》2016,37(9):861-870
A new computational protocol relying on the use of electrostatic embedding, derived from QM/QM’ ONIOM calculations, to simulate the effect of the crystalline environment on the emission spectra of molecular crystals is here applied to the β‐form of salicylidene aniline (SA). The first singlet excited states (S1) of the SA cis‐keto and trans‐keto conformers, surrounded by a cluster of other molecules representing the crystalline structure, were optimized by using a QM/QM’ ONIOM approach with and without electronic embedding. The model system consisting of the central salicylidene aniline molecule was treated at the DFT level by using either the B3LYP, PBE0, or the CAM‐B3LYP functional, whereas the real system was treated at the HF level. The CAM‐B3LYP/HF level of theory provides emission energies in good agreement with experiment with differences of ?20/?32 nm ( cis‐keto form) and ?8/?14 nm ( trans‐keto form), respectively, whereas notably larger differences are obtained using global hybrids. Though such differences on the optical properties arise from the density functional choice, the contribution of the electronic embedding is rather independent of the functional used. This plays in favor of a more general applicability of the present protocol to other crystalline molecular systems. © 2016 Wiley Periodicals, Inc. 相似文献
13.
The electronic absorption and emission spectra of large molecules reflect the extent and timescale of electron-vibration coupling and therefore the extent and timescale of relaxation/reorganization in response to a perturbation. In this paper, we present a comparison of the calculated absorption and emission spectra of NADH in liver alcohol dehydrogenase (LADH), using quantum mechanical/molecular mechanical methods, in which we vary the QM component. Specifically, we have looked at the influence of basis set (STO-3G, 3-21G*, 6-31G*, CC-pVDZ, and 6-311G**), as well as the influence of applying the DFT TD-B3LYP and ab initio TD-HF and CIS methods to the calculation of absorption/emission spectra and the reorganization energy (Stokes shift). The ab initio TD-HF and CIS methods reproduce the experimentally determined Stokes shift and spectral profiles to a high level of agreement, while the TD-B3LYP method significantly underestimates the Stokes shift, by 45%. We comment on the origin of this problem and suggest that ab initio methods may be naturally more suited to predicting molecular behavior away from equilibrium geometries. 相似文献
14.
Yuexing Zhang Xue Cai Xianxi Zhang Hui Xu Zhongqiang Liu Jianzhuang Jiang 《International journal of quantum chemistry》2007,107(4):952-961
Time‐dependent density functional theory (TD‐DFT) calculations were carried out in a comparative study of the electronic absorption spectra of lead(II) phthalocyaninate (PbPc), tin(II) phthalocyaninate (SnPc), tin(IV) dichlorophalocyaninate (PcSnCl2), germanium(II) phthalocyaninate (GePc), and germanium (IV) dichlorophalocyaninate (PcGeCl2) with the B3LYP method and LANL2DZ basis set. Our calculated bands correspond well with the experimental results. The electronic natures of all the bands in the absorption spectra are assigned and analyzed comparatively according to the calculated electronic transition contributions. With the increase of the dielectric constant from CHCl3 to DMSO, all the electronic absorption bands are somewhat red shift, consistent with the shift rules measured experimentally. The radius of the central metals has great influence to the absorption spectra, especially for the B bands. The influence of the radius of the central metals to the absorption spectra of PcSnCl2 and PcGeCl2 is smaller than to the spectra of the nonplanar MPcs (M = Pb, Sn, and Ge). Axial ligands also greatly changed the electronic absorption spectra due to the change of the orbital energy level and the molecular symmetry. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007 相似文献
15.
Matthias Witte Benjamin Grimm‐Lebsanft Arne Goos Stephan Binder Michael Rübhausen Martin Bernard Adam Neuba Serge Gorelsky Uwe Gerstmann Gerald Henkel Wolf Gero Schmidt Sonja Herres‐Pawlis 《Journal of computational chemistry》2016,37(24):2181-2192
Density functional theory (DFT) and time‐dependent DFT calculations are presented for the dicopper thiolate complex Cu2(NGuaS)2Cl2 [NGuaS=2‐(1,1,3,3‐tetramethylguanidino) benzenethiolate] with a special focus on the bonding mechanism of the Cu2S2Cl2 core and the spectroscopic response. This complex is relevant for the understanding of dicopper redox centers, for example, the CuA center. Its UV/Vis absorption is theoretically studied and found to be similar to other structural CuA models. The spectrum can be roughly divided in the known regions of metal d‐d absorptions and metal to ligand charge transfer regions. Nevertheless the chloride ions play an important role as electron donors, with the thiolate groups as electron acceptors. The bonding mechanism is dissected by means of charge decomposition analysis which reveals the large covalency of the Cu2S2 diamond core mediated between Cu and S‐S π and π* orbitals forming Cu‐S σ bonds. Measured resonant Raman spectra are shown for 360‐ and 720‐nm excitation wavelength and interpreted using the calculated vibrational eigenmodes and frequencies. The calculations help to rationalize the varying resonant behavior at different optical excitations. Especially the phenylene rings are only resonant for 720 nm. © 2016 Wiley Periodicals, Inc. 相似文献
16.
Athanassios C. Tsipis Dimitrios N. Gkarmpounis 《Journal of computational chemistry》2012,33(29):2318-2331
The electronic structure, chemical bonding, and excitation spectra of neutral, cationic, and anionic diatomic molecules of Cu and 14 group elements formulated as [CuE]+/0/? (E = C, Si, Ge, Sn, Pb) were investigated by density functional theory (DFT) and time‐dependent (TD)‐DFT methods. The electronic and bonding properties of the diatomics analyzed by natural bond orbital (NBO) analysis approch revealed a clear picture of the chemical bonding in these species. The spatial organization of the bonding between Cu and E atoms in the [CuE]+/0/? (E = Si, Ge, Sn, Pb) molecules can easily be recognized by the cut‐plane electron localization function representations. Particular emphasis was given on the absorption spectra of the [CuE]+/0/? which were simulated using the results of TD‐DFT calculations employing the hybrid Coulomb‐attenuating CAM‐B3LYP functional. The absorption bands have thoroughly been analyzed and assignments of the contributing principal electronic transitions associated to individual excitations have been made. © 2012 Wiley Periodicals, Inc. 相似文献
17.
Julien Preat Denis Jacquemin Eric A. Perpète 《International journal of quantum chemistry》2008,108(4):762-773
We report the development of an accurate computational procedure for the calculation of the n → π* (λmax?1) and π → π* (λmax?2) transitions of a set of thiocarbonyl derivatives. To ensure converged results, all calculations are carried out using the 6‐311+G(2df,p) basis set for time‐dependent calculations, and the 6‐311G(2df,p) for the ground‐state geometrical optimization. Starting with two hybrids, PBE0 and B3LYP, the Hartree–Fock exchange percentage (α) used is optimized in order to reach excitation energies that fit experimental data. It turns out that BLYP(α) is the more adequate functional for calibration. For the n → π* excitation, the optimal α value lies in the 0.10–0.20 interval, whereas for the π → π* process setting α equal to 0.10 provides the most accurate results. The corresponding mean absolute errors (MAE) are limited to 17 nm for λmax?1, and to 10 nm for λmax?2, allowing a consistent and accurate prediction of both transitions. We also assess the merits of the ZINDO//AM1 scheme and it turns out that the semi‐empirical method only provides a poor prediction of the λmax of thiocarbonyl derivatives, especially for the n → π* transition. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008 相似文献
18.
Hussein Moustafa Mohamed E. Elshakre Huwaida M. E. Hassaneen Salwa Elramly 《中国化学会会志》2019,66(12):1666-1681
Electronic spectra of 2,4‐diphenyl‐1,5‐benzothiazepine and some of its derivatives in 1,2‐dichloromethane and ethanol are investigated experimentally and theoretically using the time dependent density functional theory (TD‐DFT) method at the B3LYP/6‐311G** level of the theory. The origin of the spectrum of the parent compound is found to be an additive one. The observed ultra violet (UV) spectra in both solvents show two bands S1 in the range between 312–334 nm and S2 in the range between 248–272 nm. The solvent effect is investigated experimentally and theoretically and a blue shift is observed, which is explained in terms of a hydrogen bond model between the solvent and the most negative site of the solute (N atom). This theoretical model is robust in reproducing the experimental blue shift and calculating the hydrogen bond energy and hydrogen bond length. The extent of delocalization and charge transfer processes of the studied compounds is estimated and discussed in terms of natural bond orbital (NBO) analysis and second order perturbation interactions (E2) between donors and acceptors. The effect of substituents of the studied compounds in both solvents shows a noticeable red shift attributed to hyperconjugation effects of the π electron systems of the different moieties. 相似文献
19.
Valérie Wathelet Julien Preat Michaël Bouhy Michèle Fontaine Eric A. Perpète Jean-Marie André Denis Jacquemin 《International journal of quantum chemistry》2006,106(8):1853-1859
Using the parameter‐free PBE0 hybrid functional, we compute the UV/Vis spectra of a series of solvated compounds presenting a carbonyl chromophoric unit linked to a carbon–carbon double bond. It turns out that PBE0 is extremely efficient for accurately reproducing experimental values, with a mean unsigned error of 7 nm for an extended set of compounds, although no fitting or statistical treatments are performed. PBE0 has a predictive efficiency comparable to the well‐known Woodward–Fieser empirical formula, and can therefore be used to extend these rules without requiring additional experimental results. Consequently, the UV/Vis spectra of several compounds that have not yet been synthesized are predicted. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006 相似文献
20.
A series of N‐methyl‐3,4‐fulleropyrrolidine (NMFP) derivatives were designed by selecting different π‐conjugated linkers and electron‐donating groups as D‐π‐A and D‐A systems. The optimised structures and photo‐physical properties of NMFP and its derivatives have been determined using density functional theory (DFT) and time‐dependent density functional theory (TD‐DFT) methods with the B3LYP functional and the 6‐31G basis set. According to the computation analysis, both the π‐conjugated linkers and the electron‐donating groups can influence the electronic and photo‐physical properties of the NMFP derivatives. Our calculated results demonstrated that the electron‐donating groups, with significant electron‐donating ability, had the tendency to increase the highest occupied molecular orbital (HOMO) energy. The π‐conjugated linkers with lower resonance energy decreased the lowest occupied molecular orbital (LUMO) energy and caused a significant decrease in the energy gap (Eg) between the EHOMO and ELUMO. A Natural Bond Orbital (NBO) analysis examines the effect of the electron‐donating group, π conjugated linker, and electron‐withdrawing group for these NMFP derivatives. For the NMFP derivatives, a projected density of state (PDOS) analysis demonstrated that the electron density of HOMO and LUMO are concentrated on the electron‐donating group and the π‐conjugated linker, respectively. A TD‐DFT/B3LYP calculation was performed to calculate the electronic absorption spectra of these NMFP derivatives. Both the electron‐donating group and the π‐conjugated linker contribute to the major absorption peaks, which are assigned as HOMO to LUMO transitions and are red‐shifted relative to those of non‐substituted NMFP. 相似文献