共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present work, three novel phenols (10a,11‐dihydro‐4bH‐indeno[1,2‐b]quinolin‐4‐ol ( 1 ), 5,6‐dihydro‐benzo[c]acridin‐1‐ol ( 2 ), and 5,5,7,7a‐tetrahydro‐4aH‐13‐aza‐benzo[3,4]cyclohepta[1,2‐b]naphthalene‐1‐ol ( 3 )) have been explored theoretically in detail. Using density functional theory (DFT) and time‐dependent DFT (TDDFT) methods, we inquire into the intramolecular hydrogen‐bonding interactions and the excited‐state intramolecular proton transfer (ESIPT) process. Exploring the steady‐state absorption and emission spectra under TDDFT/B3LYP/TZVP theoretical level in acetonitrile solvent, our calculated results demonstrate an experimental phenomenon. Based on analysis of the variations of geometrical parameters and infrared (IR) vibrational spectra, we confirm that O–H?N should be strengthened in the S1 state. Investigating the frontier molecular orbitals (MOs) and the charge density difference (CDD) maps, it can be confirmed that the charge redistribution facilitates the tendency of the ESIPT process for 1 , 2, and 3 systems. By constructing potential energy curves, we confirm that the proton transfer should occur in the S1 state. In particular, the ESIPT for 2 and 3 systems are nonbarrier processes in the S1 state, which confirms that ESIPT should be exothermal spontaneously. This work explains previous experimental results and makes a reasonable assumption about the ESIPT mechanism for 1 , 2 and 3 systems. We sincerely hope our work can facilitate understanding and promoting applications about them in future. 相似文献
2.
Two novel 2′-hydroxychalcone derivatives (i.e., M1 and M2) are explored in this work. We mainly focus on investigating the effects of photoexcitation on hydrogen bonds and on the excited-state intramolecular proton transfer (ESIPT) process. On the basis of calculations of electrostatic potential surface and intramolecular interactions, we verify the formation of hydrogen bond O1 H2···O3 in both S0 and S1 states. Exploring the ultraviolet–visible spectra in the liquid phase, our simulated results reappear in the experimental phenomenon. Analyzing molecular geometry and infrared stretching vibrational spectra, we confirm O1 H2···O3 is strengthened for both M1 and M2 in the S1 state. We further confirm that charge redistribution facilitates ESIPT tendency. Constructing potential energy curves, we find the ultrafast ESIPT behavior for M1, which is because of the deficiency of side hydroxyl moiety comparing with M2. This work makes a reasonable affiliation of the ESIPT mechanism for M1 and M2. We wish this paper could facilitate understanding these two novel systems and promote their applications. 相似文献
3.
Qiaoli Zhang Zhongjian Zhao Shibo Cheng Guang Yang Tianjie Zhang Min Jia Xiaoyan Song 《中国化学会会志》2019,66(11):1416-1421
Given the tremendous potential applications of excited state intramolecular proton transfer (ESIPT) systems, ESIPT molecules have received widespread attention. In this work, based on density functional theory (DFT) and time‐dependent DFT (TDDFT) methods, we theoretically study the excited state dynamical behaviors of salicyladazine (SA) molecules. Our simulated results show that the double intramolecular hydrogen bonds of SA are strengthened in the S1 state via exploring bond distances, bond angles, and infrared (IR) vibrational spectra. Exploring the frontier molecular orbitals (MOs), we confirm that charge redistributions indeed have effects on excited state dynamical behaviors. The increased electronic densities on N atoms and the decreased electronic densities on O atoms imply that charge redistribution may trigger the ESPT process. Analyzing the constructed S0‐state and S1‐state potential energy surfaces (PESs), we confirm that only the excited state single proton transfer reaction can occur although SA possesses two intramolecular hydrogen bonds. In this work, we clarify the specific ESIPT mechanism, which may facilitate developing novel applications based on the SA system in future. 相似文献
4.
In this present work, we clarify the excited-state intramolecular proton transfer (ESIPT) mechanism for 2,3-bis[(4-diethylamino-2-hydroxybenzylidene)amino]but-2-enedinitrile (BDABE) system. We present the fact that excited-state single proton transfer can occur along with one hydrogen bond, even though BDABE form consists of two intramolecular hydrogen bonds. Based on the density functional theory and time-dependent density functional theory methods, we theoretically investigate and elaborate the excited-state intramolecular dual hydrogen-bonding interactions. By simulating the electrostatic potential surface, we verify the formation of dual intramolecular hydrogen bonds for BDABE molecule in the S0 state. Furthermore, comparing the primary bond lengths and bond angles as well as the infrared vibrational spectra, we find that the double hydrogen bonds should be strengthened in the S1 state. When it comes to photoexcitation process, we discover the charge redistribution around hydrogen bonding moieties. The increased electronic density around proton acceptor plays the important roles in strengthening hydrogen bonds and in facilitating ESIPT reaction. In view of the possible ESIPT reaction paths (i.e., stepwise and synchronization double proton transfer) for BDABE molecule, we explored the S0-state and S1-state potential energy curves. This work explains experimental results and further clarifies the excited-state behaviors for BDABE system. 相似文献
5.
In this work, density functional theory (DFT) and time‐dependent density functional theory (TDDFT) methods are used to explore the excited‐state intramolecular proton transfer (ESIPT) mechanism of a novel system 4′‐dimethylaminoflavonol (DAF). By analyzing the molecular electrostatic potential (MEP) surface, we verify that the intramolecular hydrogen bond in DAF exists in both the S0 and S1 states. We calculate the absorption and emission spectra of DAF in two solvents, which reproduce the experimental results. By comparing the bond lengths, bond angles, and relative infrared (IR) vibrational spectra involved in the hydrogen bonding of DAF, we confirm the hydrogen‐bond strengthening in the S1 state. For further exploring the photoexcitation, we use frontier molecular orbitals to analyze the charge redistribution properties, which indicate that the charge transfer in the hydrogen‐bond moiety may be facilitating the ESIPT process. The constructed potential energy curves in acetonitrile and methylcyclohexane solvents with shortened hydrogen bond distances demonstrate that proton transfer is more likely to occur in the S1 state due to the lower potential barrier. Comparing the results in the two solvents, we find that aprotic polar and nonpolar solvents seem to play similar roles. This work not only clarifies the excited‐state behaviors of the DAF system but also successfully explains its spectral characteristics. 相似文献
6.
用时间分辨窝里叶红外发射谱研究了高振动激发态CO向C2H2的传能,得到了CO(v=1-3)各振动态布展及其随时间的变化,利用微分法解出弛豫微分方程组,获得CO(v=1-3)向C2H2的传能速率常数分别为:2.0±0.1,6.0±0.2和9.1±0.8(10-13cm3·molecule-1·s-1).传能速率随着振动量子数的增加而迅速增加.CO的振动能应向C2H2的对称伸缩模v2近共振V-V传递.传能过程中还可能形成二聚体络合物,加速了CO(v)向C2H2的传能.用abinitio方法确定了CO...C2H2两种可能的直线构型. 相似文献
7.
8.
《中国化学会会志》2018,65(6):667-673
Adopting density functional theory (DFT) and time‐dependent density functional theory (TDDFT) methods, we investigat and present two different excited‐state intramolecular proton transfer (ESIPT) mechanisms of angular‐quinacridone (a‐QD) in both toluene and DMF,theoretically. Comparing the primary structural variations of a‐QD involved in the intramolecular hydrogen bond, we conclude that N1–H2⋯O3 should be strengthened in the S1 state, which may facilitate the ESIPT process. Particularly, in toluene, the S1‐state‐stable a‐QD enol* could not be located because of the non‐barrier ESIPT process. Concomitantly, infrared vibrational spectral analysis further verified the stability of the hydrogen bond. In addition, the role of charge–transfer interaction has been addressed under the frontier molecular orbitals (MOs), which depicts the nature of the electronic excited state and supports the ESIPT reaction. The potential energy curves according to variational N1–H2 coordinate demonstrates that the proton transfer process should occur spontaneously in toluene; however, in DMF, a low potential energy barrier of 0.493 kcal/mol is needed to complete the ESIPT reaction. Although this barrier of 0.493 kcal/mol is too low to make an important impact on the ESIPT reaction, just because of the existence of barrier, ESIPT mechanisms in toluene and DMF are different. 相似文献
9.
Organic chemosensors with excited-state intramolecular proton transfer (ESIPT) behavior have attracted much attention because it has great potential in a wide range of applications. Considering the paramount behavior of excited-state relaxation, in this work, we mainly focus on deciphering photo-induced hydrogen bonding effects and ESIPT mechanism for the novel 2-(benzo[d]thiazol-2-yl)-4-(9H-carbazol-9-yl)phenol (mCzOH) dye. Considering the effects of different solvents on excited-state dynamics of mCzOH flurophore, we adopt four solvents with different polarities. Analyses of fundamental structural changes, infrared (IR) vibrational spectra, and core valence partition index between S0 and S1 state, we confirm hydrogen bond O H···N of mCzOH should be enhanced via photoexcitation. Especially, the increase of solvent polarity could promote hydrogen bonding strengthening degree. Intramolecular charge transfer (ICT) resulting from photoexcitation qualitatively facilitates the ESIPT occurrence to a large extent. For further checking and probing into ESIPT mechanism, via constructing potential energy curves (PECs) in four solvents, we clarify the ESIPT behavior for mCzOH. Most worthy of mention is that polar solvent plays critical roles in lowering potential barrier of ESIPT reaction and in facilitating ESIPT process. We not only clarify the detailed excited-state process, but also present the solvent-polarity-dependent ESIPT mechanism for mCzOH fluorophore. 相似文献
10.
New ab initio potential energy surfaces for the ground ( ) and excited ( ) electronic states of HSiCl were obtained by using the single and double excitation coupled‐cluster theory with a noniterative perturbation treatment of triple excitations and the multi‐reference configuration interaction with Davidson correction, respectively, employing an augmented correlation‐consistent polarized valence quadruple zeta basis set. For the excited state , an extended active space (18 electrons in 12 orbitals) was used. The calculated vibrational energy levels of HSiCl and DSiCl of the ground and excited electronic states are in better agreement with the available experimental values than the previous theoretical results. In addition, with the calculated transition dipole moment, the absorption and emission spectra of HSiCl and DSiCl were calculated using an efficient single Lanczos propagation method and are in reasonable agreement with the available observed spectra. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011 相似文献
11.
It is well known that the molecular excited state dynamical process plays important roles in designing and developing novel applications. In this work, based on density functional theory and time‐dependent density functional theory methods, we theoretically explored a novel 3‐hydroxythioflavone (3HTF). Through calculating the electrostatic potential surface of the 3HTF structure, we confirm the formation of intramolecular hydrogen bonding O2‐H3···O4. Our theoretically obtained dominating bond lengths and bond angles involved in hydrogen bonds demonstrate that the intramolecular hydrogen bonds should be strengthened in the S1 state. Coupling with the simulated infrared vibrational spectra, we further verify the enhanced hydrogen bonding O2‐H3···O4 in the S1 state. Upon photoexcitation, we found that the charge transfer characteristics around hydrogen bonding moieties play important roles in facilitating the excited state intramolecular proton transfer (ESIPT) process. Via constructing potential energy curves in both S0 and S1 states, we confirm the almost nonbarrier ESIPT reaction should be an ultrafast process that further explains the previous experimental phenomenon. At last, we search the S1‐state transition state (TS) structure along with ESIPT path, based on which we simulate the intrinsic reaction coordinate path that further confirms the ESIPT mechanism. We hope that our theoretical work could guide novel applications based on the 3HTF system in future. 相似文献
12.
13.
TheN2Omoleculeplaysaveryimportantroleinozonechemistryintheatomosphere.Itsrovibrationalspectracanprovideusefulinformationabouttheintramoleculardynamicproperties.N2Oisalinearmoleculeattheequilibriumgeometryfortheelectronicgroundstate.Numerousinvestigatio… 相似文献
14.
Thin film transmission spectra of liquid N-methylpiperidine were measured in the 4000–500 cm−1 region, using cells of thicknesses ranging from 1 to 8.2 μm. The spectra of both components of the complex refractive index were determined from these data in the mid-IR. Vibrational intensities and other spectral data were calculated from the k(ν) spectrum. In this region 41 bands were detected and quantitatively described. The assignment of numerous bands was carried out. The results were compared with available literature data. 相似文献
15.
The potential energy surface for the electronic ground state of the HXeBr molecule is constructed from more than 4200 ab initio points calculated using the internally contracted multi-reference configuration interaction method with the Davidson correction (icMRCI + Q). The stabilities and dissociation barriers are identified from the potential energy surface. The three-body dissociation channel is found to be the dominant dissociation channel for HXeBr. Low-lying vibrational energy levels of HXeBr calculated using the Lanczos algorithm are found to be in good agreement with the available experimental band origins. 相似文献
16.
Jin‐Feng Sun Jie‐Min Wang De‐Heng Shi 《International journal of quantum chemistry》2012,112(3):672-682
The highly accurate valence internally contracted multireference configuration interaction (MRCI) approach has been employed to investigate the potential energy curves (PECs) for the X2Π, b4Σ?, C2Σ? states of PO and the X1Σ+ state of PO+. For these electronic states, the spectroscopic parameters of the isotopes (P16O, P18O, P16O+, and P18O+) have been determined and compared with those of the investigations reported in the literature. The comparison shows that excellent agreement exists between the present results and the available experiments. With the PECs determined here, the first 30 vibrational states for P16O(X2Π, b4Σ?), P18O(X2Π, b4Σ?), P16O+(X1Σ+), and P18O+(X1Σ+) are computed when the rotational quantum number J equals zero (J = 0). The vibrational level G(υ), inertial rotation constant Bυ and centrifugal distortion constant Dυ are determined when J = 0. All the results of vibrational states except for P16O (X2Π) are reported for the first time. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011 相似文献
17.
L. I. Krishtalik 《Russian Journal of Electrochemistry》2008,44(1):43-49
Using own and literature data, the differences of real solvation energy for ferricenium and ferrocene in six solvents are found. These quantities are confronted with the calculated difference of the dielectric response energies plus nonelectrostatic energies for the redox couple. Such a comparison allows determining the sum of the surface and intraphase potentials. The comparison of these sums with the experimental values of the surface potential differences obtained by the measuring of Volta potentials allowed determining the differences of pre-existing intraphase potentials formed by solvent molecules on the ferrocene molecule. Thus, the intraphase potentials are evaluated for the first time, using an approach not based on the molecular-dynamic modeling. Using some approximations, the surface potentials of the studied solvents are found. 相似文献
18.
A novel pH-sensitive fluorescent probe T2(OH)B was selected to theoretically investigate its excited state hydrogen bonding effects and excited state intramolecular proton transfer (ESIPT) process. First, it was verified that one intramolecular hydrogen bond is formed spontaneously in T2(OH)B itself. Given the geometrical changes, we further confirm that the hydrogen bond should be strengthened in the first excited state. When it comes to the photoexcitation process, we present the charge redistribution around hydrogen bonding moieties facilitate the ESIPT tendency. The increased electronic densities around acceptor promote the attraction of hydrogen protons. The potential energy barrier in the constructed potential energy curves reveals that the ESIPT process of the T2(OH)B system should be ultrafast. And comparing several nonpolar solvents, we deem solvent polarity plays little role in the ESIPT reaction. Furthermore, we also search the S1-state transition state structure along with the ESIPT path, based on which we simulate the intrinsic reaction coordinate path. We not only confirm the ESIPT mechanism presented in this work but also clarify the ultrafast excited state process and explain previous experiment. We sincerely hope that our theoretical work could guide novel applications based on the T2(OH)B system in future. 相似文献
19.
O. A. V. Amaral 《Theoretical chemistry accounts》1985,67(3):193-197
The potential curves for the ground state of Li2 (1
g
+
) and FH (1
g
+
) are computed. The correlation energy is calculated using a functional of the one- and two-electron density matrices derived from an MC SCF reference wavefunction and is added to the reference energy to obtain a correlated potential curve. 相似文献
20.
本文通过红外光谱(FT-IR)测量数据和预测数据,计算与研究了十九种长链正烷基脂肪酸(简称脂肪酸或碳酸)的碳链骨架振动能量。结果显示出脂肪酸的碳链骨架振动能量随碳数增加呈阶梯状关系,而且脂肪酸的碳链骨架振动能量∑E出现奇偶数更迭规律。此结果可用来解释脂肪酸的熔点或熔化热呈现奇偶数更迭现象。 相似文献