首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B. Huang  D. Wu 《组合设计杂志》2009,17(4):333-341
External difference families (EDFs) are a type of new combinatorial designs originated from cryptography. Some results had been obtained by Chang and Ding, the connection between EDFs and disjoint difference families (DDFs) was also established. In this paper, further cyclotomic constructions of EDFs and DDFs are presented, and several classes of EDFs and DDFs are obtained. Answers to problems 1 and 4 by Chang and Ding are also given. © 2009 Wiley Periodicals, Inc. J Combin Designs 17: 333–341, 2009  相似文献   

2.
The article gives constructions of disjoint 5‐designs obtained from permutation groups and extremal self‐dual codes. Several new simple 5‐designs are found with parameters that were left open in the table of 5‐designs given in (G. B. Khosrovshahi and R. Laue, t‐Designs with t⩾3, in “Handbook of Combinatorial Designs”, 2nd edn, C. J. Colbourn and J. H. Dinitz (Editors), Chapman & Hall/CRC, Boca Raton, FL, 2007, pp. 79–101), namely, 5−(v, k, λ) designs with (v, k, λ)=(18, 8, 2m) (m=6, 9), (19, 9, 7m) (m=6, 9), (24, 9, 6m) (m=3, 4, 5), (25, 9, 30), (25, 10, 24m) (m=4, 5), (26, 10, 126), (30, 12, 440), (32, 6, 3m) (m=2, 3, 4), (33, 7, 84), and (36, 12, 45n) for 2⩽n⩽17. These results imply that a simple 5−(v, k, λ) design with (v, k)=(24, 9), (25, 9), (26, 10), (32, 6), or (33, 7) exists for all admissible values of λ. © 2010 Wiley Periodicals, Inc. J Combin Designs 18: 305–317, 2010  相似文献   

3.
A (v, k, λ) difference family ((v, k, λ)-DF in short) over an abelian group G of order v, is a collection F=(Bi|i ∈ I} of k-subsets of G, called base blocks, such that any nonzero element of G can be represented in precisely A ways as a difference of two elements lying in some base blocks in F. A (v, k, λ)-DDF is a difference family with disjoint blocks. In this paper, by using Weil's theorem on character sum estimates, it is proved that there exists a (p^n, 4, 1)-DDF, where p = 1 (rood 12) is a prime number and n ≥1.  相似文献   

4.
Cover‐free families (CFFs) were considered from different subjects by numerous researchers. In this article, we mainly consider explicit constructions of (2; d)‐cover‐free families. We also determine the size of optimal 2‐cover‐free‐families on 9, 10, and 11 points. Related separating hash families, which can be used to construct CFFs, are also discussed. © 2006 Wiley Periodicals, Inc. J Combin Designs 14: 423–440, 2006  相似文献   

5.
Let X =((x1,1,x1,2,…,x1,k),(x2,1,x2,2,…,x2,k),…,(xt,1,xt,2,…,xt,k)) be a family of t multisets of size k defined on an additive group G. We say that X is a t-(G,k,μ) strong difference family (SDF) if the list of differences (xh,i-xh,jh=1,…,t;ij) covers all of G exactly μ times. If a SDF consists of a single multiset X, we simply say that X is a (G,k,μ) difference multiset. After giving some constructions for SDF's, we show that they allow us to obtain a very useful method for constructing regular group divisible designs and regular (or 1-rotational) balanced incomplete block designs. In particular cases this construction method has been implicitly used by many authors, but strangely, a systematic treatment seems to be lacking. Among the main consequences of our research, we find new series of regular BIBD's and new series of 1-rotational (in many cases resovable) BIBD's.  相似文献   

6.
Using Galois rings and Galois fields, we construct several infinite classes of partial geometric difference sets, and partial geometric difference families, with new parameters. Furthermore, these partial geometric difference sets (and partial geometric difference families) correspond to new infinite families of directed strongly regular graphs. We also discuss some of the links between partially balanced designs, 2-adesigns (which were recently coined by Cunsheng Ding in “Codes from Difference Sets” (2015)), and partial geometric designs, and make an investigation into when a 2-adesign is a partial geometric design.  相似文献   

7.
8.
Latin square type partial difference sets (PDS) are known to exist in R × R for various abelian p‐groups R and in ?t. We construct a family of Latin square type PDS in ?t × ?2ntp using finite commutative chain rings. When t is odd, the ambient group of the PDS is not covered by any previous construction. © 2002 Wiley Periodicals, Inc. J Combin Designs 10: 394–402, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jcd.10029  相似文献   

9.
In this paper we formulate the construction of difference families as a combinatorial optimization problem. A tabu search algorithm is used to find an optimal solution to the optimization problem for various instances of difference families. In particular, we construct six new difference families which lead to an equal number of new balanced incomplete block designs with parameters: (49, 98, 18, 9, 3), (61, 122, 20, 10, 3), (46, 92, 20, 10, 4), (45, 90, 22, 11, 5), (85, 255, 24, 8, 2) and (34, 85, 30, 12, 10). © 2000 John Wiley & Sons, Inc. J Combin Designs 8: 261–273, 2000  相似文献   

10.
K. Chen  R. Wei  L. Zhu 《组合设计杂志》2002,10(2):126-138
The existence of a (q,k, 1) difference family in GF(q) has been completely solved for k = 3,4,5,6. For k = 7 only partial results have been given. In this article, we continue the investigation and use Weil's theorem on character sums to show that the necessary condition for the existence of a (q,7,1) difference family in GF(q), i.e. q ≡ 1; (mod 42) is also sufficient except for q = 43 and possibly except for q = 127, q = 211, q = 316 and primes q∈ [261239791, 1.236597 × 1013] such that in GF(q). © 2002 Wiley Periodicals, Inc. J Combin Designs 10: 126–138, 2002; DOI 10.1002/jcd.998  相似文献   

11.
The concept of a (q, k, λ, t) almost difference family (ADF) has been introduced and studied by C. Ding and J. Yin as a useful generalization of the concept of an almost difference set. In this paper, we consider, more generally, (q, K, λ, t, Q)-ADFs, where K = {k1, k2, ..., kr} is a set of positive integers and Q = (q1, q2,..., qr) is a given block-size distribution sequence. A necessary condition for the existence of a (q, K, λ, t, Q)-ADF is given, and several infinite classes of (q, K, λ, t, Q)-ADFs are constructed.  相似文献   

12.
Fu and Mishima [J. Combin. Des. 10 (2002), pp. 116–125] have utilized the extended Skolem sequence to prove that there exists a 1‐rotationally resolvable 4 ‐cycle system of 2 K v if and only if v 0 (mod 4 ). In this paper, the existence of a cyclically near‐resolvable 4 ‐cycle system is discussed, and it is shown that there exists a cyclically near‐resolvable 4 ‐cycle system of 2 K v if and only if v 1 (mod 4 ).  相似文献   

13.
《Mathematische Nachrichten》2017,290(8-9):1406-1419
In this paper we generalize minimal p‐divisible groups defined by Oort to minimal F‐crystals over algebraically closed fields of positive characteristic. We prove a structural theorem of minimal F‐crystals and give an explicit formula of the Frobenius endomorphism of the basic minimal F‐crystals that are the building blocks of the general minimal F‐crystals. We then use minimal F‐crystals to generalize minimal heights of p‐divisible groups and give an upper bound of the isomorphism numbers of F‐crystals, whose isogeny type are determined by simple F‐isocrystals, in terms of their ranks, Hodge slopes and Newton slopes.  相似文献   

14.
External Difference Families from Finite Fields   总被引:3,自引:0,他引:3       下载免费PDF全文
External difference families (EDFs) are a type of combinatorial designs that originated from cryptography. Many combinatorial objects are closely related to EDFs, such as difference sets, difference families, almost difference sets, and difference systems of sets. Constructing EDFs is thus of significance in theory and practice. In this paper, earlier ideas of constructing EDFs proposed by Chang and Ding (2006), and Huang and Wu (2009), are further explored. Consequently, new infinite classes of EDFs are obtained and some previously known results are extended.  相似文献   

15.
We consider direct constructions due to R. J. R. Abel and M. Greig, and to M. Buratti, for ({ν},5,1) balanced incomplete block designs. These designs are defined using the prime fields Fp for certain primes p, are 1‐rotational over G ⊕ Fp where G is a group of order 4, and are also resolvable under certain conditions. We introduce specifications to the constructions and, by means of character sum arguments, show that the constructions yield resolvable designs whenever p is sufficiently large. © 2000 John Wiley & Sons, Inc. J Combin Designs 8:207–217, 2000  相似文献   

16.
Combinatorial t ‐designs have nice applications in coding theory, finite geometries, and several engineering areas. A classical method for constructing t ‐designs is by the action of a permutation group that is t ‐transitive or t ‐homogeneous on a point set. This approach produces t ‐designs, but may not yield ( t + 1 ) ‐designs. The objective of this paper is to study how to obtain 3‐designs with 2‐transitive permutation groups. The incidence structure formed by the orbits of a base block under the action of the general affine groups, which are 2‐transitive, is considered. A characterization of such incidence structure to be a 3‐design is presented, and a sufficient condition for the stabilizer of a base block to be trivial is given. With these general results, infinite families of 3‐designs are constructed by employing almost perfect nonlinear functions. Some 3‐designs presented in this paper give rise to self‐dual binary codes or linear codes with optimal or best parameters known. Several conjectures on 3‐designs and binary codes are also presented.  相似文献   

17.
Nonsymmetric 2 ( v , k , λ ) designs, with ( r , λ ) = 1 , admitting a solvable flag‐transitive automorphism group of affine type not contained in A Γ L 1 ( v ) are classified.  相似文献   

18.
Combinatorial t ‐designs have wide applications in coding theory, cryptography, communications, and statistics. It is well known that the supports of all codewords with a fixed weight in a code may give a t ‐design. In this paper, we first determine the weight distributions of a class of linear codes derived from the dual of some extended cyclic codes. We then obtain infinite families of 2‐designs and explicitly compute their parameters from the supports of all the codewords with a fixed weight in the codes. By a simple counting argument, we obtain exponentially many 2‐designs.  相似文献   

19.
We investigate Class‐Uniformly Resolvable Designs, which are resolvable designs in which each of the resolution classes has the same number of blocks of each size. We derive the fully general necessary conditions including a number of extremal bounds. We present two general constructions. We primarily consider the case of block sizes 2 and 3, where we find two infinite extremal families and finish two other infinite families by difference constructions. We present tables showing the current state of knowledge in the case of block size 2 and 3 for all orders up to 200. © 2001 John Wiley & Sons, Inc. J Combin Designs 8: 79–99, 2001  相似文献   

20.
In this paper, we establish the existence of some infinite families of 2‐designs from ‐dimensional projective geometry , which admit ‐dimensional projective special linear group as their flag‐transitive automorphism group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号