首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The prevalence of germs that are resistant to many antibiotics is rising rapidly the world over. There is a large group of researchers actively looking for better medicines. Here, we designed two series of hydrazonal and indeno[1,2-b]pyridin-5-one bearing hydrazone and azo-groups to test their antimicrobial activity. Molecular structures of all derivatives were assured based on their spectral data and elemental analyses. Results of the antimicrobial activity of the tested hydrazone and azo compounds showed promising potential for several derivatives. The minimum inhibitory concentrations (MICs) of hydrazones 4a - h and 6a - g displayed good antibacterial reactivities with a range of 3.91–250 μg/mL and moderate antifungal activity with a range of 15.6–500 μg/mL. The most promising hydrazone 4f and azo- 6a compounds demonstrated MIC values against Streptococcus faecalis and Escherichia coli equal to 3.91 and 7.81 μg/mL, respectively. Moreover, azo compound 6a showed MIC value equal to 3.91 μg/mL against Enterobacter cloacae species. Additionally, derivative 4f exhibited a significant inhibitory profile against the E. coli gyrase A enzyme (IC50 = 5.53 μg/mL). On the other hand, compound 6a (IC50 14.05 μg/mL) exhibited the lowest DNA gyrase inhibitory activity as compared to compounds 4f and reference standard drug novobiocin, IC50 5.53 and 1.88 μg/mL, respectively. Pharmacokinetic and pharmacodynamic profiles and molecular docking studies for the two most promising molecules 4f and 6a were computed and revealed that both compounds have good ADME profiles and high binding affinity to DNA gyrase binding site.  相似文献   

2.
Hydrazonoyl halides have been known for their ability to react with different reagents to afford wide range of bioactive heterocyclic systems as thiazoles and imidazopyrazoles. This research work focused on the synthesis of two new fluorinated hydrazonoyl chlorides and used them in synthesis of novel series of thiazole derivatives and two imidazopyrazole systems. The mechanistic pathways and the structures of all synthesized derivatives were discussed and assured based on the available spectral data. The results of antimicrobial activity of the tested thiazoles and imidazopyrazoles showed that some derivatives have moderate to no activity against tested fungi and bacteria strains. Only one derivative namely 2-(2-(3-fluoro-4-methylphenyl)hydrazono)-7-(2-oxoindolin-3-ylidene)-2,7-dihydro-3H-imidazo[1,2-b]pyrazole-3,6(5H)-dione is the most active against Candida albicans (CA) with IZD = 20 mm, which was equipotent to ketoconazole. Furthermore, docking simulation was carried out to predict the binding pattern of the new compounds in the ATP binding site of the DNA gyrase B enzyme. The results of the docking simulation revealed that compounds 9a-e , 12 , and 13a,b fit well in the ATP binding site of DNA gyrase B with docking score values ranging from −5.883 to −6.833 kcal/mol.  相似文献   

3.
Reaction of phenoxyacetic acid hydrazide with isocyanate was used to the synthesis of new semicarbazide derivatives. Cyclization of these compounds in a 2% aqueous solution of sodium hydroxide led to formation of 1,2,4‐triazole‐3‐one. The chemical structure of synthesized compounds was confirmed by elemental analysis and spectroscopic methods (1H and 13C NMR). On the basis of the NMR, spectra were found that cyclic compounds 1,2,4‐triazole exist in the ‐one form. Moreover, all derivatives were examined for their in vitro activity against some species of bacteria. New compounds presented mild or moderate antimicrobial activity only against reference Gram‐positive bacteria. Two derivatives (one semicarbazide and one triazole) showed bactericidal or bacteriostatic activity.  相似文献   

4.
In this study, the antimicrobial effect and DNA gyrase inhibitor potential of vanillin-based pyridyl–substituted fluoro-indolines were evaluated. These compounds are synthesized and established through green-chemistry approaches. The inhibition effect on both DNA gyrase A and B was evaluated in silico and in vitro. Agar well diffusion method–based antimicrobial activity against Gram-ve Pseudomonas aeruginosa (MTCC 424) and Escherichia coli (MTCC 443), Gram+ve Streptococcus pyogenes (MTCC 442) and Staphylococcus aureus (MTCC 96), and a clinical isolate of Candida albicans (Fungi) was evaluated. The cytotoxicity of the compounds was assessed over macrophages using the MTT assay. In the results, the target compounds exhibited a broad-spectrum antimicrobial activity against both bacterial types and fungal.  相似文献   

5.
Some novel [1,2,4]triazolo[3,4‐b][1,3,4]thiadiazole derivatives were synthesized from aryl acetic acids. All the synthesized derivatives were selected for the screening of antibacterial potential against Gram‐positive bacteria [Staphylococcus aureus (MTCC 3160) and Micrococcus luteus (MTCC 1538)] and Gram‐negative bacteria [Escherichia coli (MTCC 1652) and Pseudomonas aeruginosa (MTCC 424)] and antifungal potential against Aspergillus niger (MTCC 8652) and Candida albicans (MTCC 227), and free radical scavenging activity through 2,2‐diphenyl‐2‐picrylhydrazyl hydrate method. The compounds TH‐4 , TH‐13 , and TH‐19 were found to be more potent antimicrobial agents compared to standard drugs. The compounds TH‐3 , TH‐9 , and TH‐18 also showed significant antimicrobial activity. The compound TH‐13 showed antioxidant activity with IC50 value better than the standard compound. The structures of all the synthesized compounds were confirmed by Fourier transform infrared, 1H‐NMR, liquid chromatography–mass spectrometry, and CHN analyzer.  相似文献   

6.
2-azido-1H-benzo[d]imidazole derivatives 1a,b were reacted with a β-ketoester such as acetylacetone in the presence of sodium ethoxide to obtain the desired molecules 2a,b. The latter acted as a key molecule for the synthesis of new carbazone derivatives 4a,b that were submitted to react with 2-oxo-N-phenyl-2-(phenylamino)acetohydrazonoyl chloride to obtain the target thiadiazole derivatives 6a,b. The structures of the newly synthesized compounds were inferred from correct spectral and microanalytical data. Moreover, the newly prepared compounds were subjected to molecular docking studies with DNA gyrase B and exhibited binding energy that extended from −9.8 to −6.4 kcal/mol, which confirmed their excellent potency. The compounds 6a,b were found to be with the minimum binding energy (−9.7 and −9.8 kcal/mol) as compared to the standard drug ciprofloxacin (−7.4 kcal/mol) against the target enzyme DNA gyrase B. In addition, the newly synthesized compounds were also examined and screened for their in vitro antimicrobial activity against pathogenic microorganisms Staphylococcus aureus, E. coli, Pseudomonas aeruginosa, Aspergillus niger, and Candida albicans. Among the newly synthesized molecules, significant antimicrobial activity against all the tested microorganisms was obtained for the compounds 6a,b. The in silico and in vitro findings showed that compounds 6a,b were the most active against bacterial strains, and could serve as potential antimicrobial agents.  相似文献   

7.
2‐Cyano‐N‐(antipyrin‐4‐yl)‐3‐(ethylthio)‐3‐(naphthalen‐1‐ylamino)acryl‐amide 4 was achieved via a one‐pot, three‐component reactions of cyanoacetamide derivative 2 , 2‐naphthyl isothiocyanate, and diethyl‐sulphate. The cyano acrylamide derivative 4 was hydrazinolysis to furnish 5‐aminopyrazole 5 ; many pyrazolo[1,5‐a ]pyrimidines 10a,b, 14, 15, 16, 18, and 20 have been synthesized via treatment of 5 with some electrophilic reagents. Also, ternary condensation of cyanoacetamide derivative 2 , terephthalaldehyde, and active methylene derivatives afforded bispyridone derivatives 21a,b . The structures of the new compounds were confirmed on the basis of elemental analysis and spectral data. Representative compounds of the synthesized products were tested and evaluated as antimicrobial. In general, the novel‐synthesized compounds showed a good antimicrobial activity against Gram‐positive bacteria, Gram‐negative bacteria, and antifungal activity against Azithromycin and Ketoconazole . The molecular modeling of the 21a and 21b as representative examples of the synthesized compounds has been drawn, and their molecular parameters were calculated.  相似文献   

8.
Thiazole and bisthiazole derivatives represent a prevalent scaffold in the antimicrobial drug discovery. Therefore, we have decided to synthesize some new series of 4,5′‐bisthiazoles. A total of 17 compounds were synthesized, their structural elucidation being based on elemental analysis (C,H,N,S) and spectroscopic data (MS and 1H NMR). Their in vitro antimicrobial activities were assessed against several Gram‐positive and Gram‐negative bacteria strains and also against one fungal strain (Candida albicans) using the difusimetric method. Some of the compounds showed modest to good antibacterial activity against Gram‐negative Escherichia coli and Salmonella typhimurium and Gram‐positive Staphylococcus aureus and Bacillus cereus bacterial strains. All of the synthesized compounds showed moderate to very good antifungal activity against C. albicans.  相似文献   

9.
A total of 17 new N‐substituted derivatives ( 2b , 2c , 2d , 2e , 2f , 2g , 2h , 2i , 2j , 2k and 3b , 3c , 3d , 3e , 3f , 3g , 3h ) of 5‐((2‐phenylthiazol‐4‐yl)methylene) thiazolidine‐2,4‐dione ( 2a ) and 5‐(2,6‐dichloro‐ benzylidene)thiazolidine‐2,4‐dione ( 3a ) were synthesized. The structural elucidation of the newly synthesized compounds was based on elemental analysis and spectroscopic data (MS, 1H NMR, 13C NMR), and their antimicrobial activities were assessed in vitro against several strains of Gram‐positive and Gram‐negative bacteria and one fungal strain (Candida albicans) as growth inhibition diameter. Some of them showed modest to good antibacterial activity against Gram‐negative Escherichia coli and Salmonella typhimurium and Gram‐positive Staphylococcus aureus, Bacillus cereus, and Enterococcus fecalis bacterial strains, whereas almost all the compounds were inactive against Listeria monocytogenes. All of the synthesized compounds showed moderate to very good activity against C. albicans.  相似文献   

10.
《中国化学会会志》2017,64(8):918-924
We report herein one‐pot synthesis and the antibacterial and antitubercular activities of 2,5‐disubstituted‐1,3,4‐oxadiazole compounds obtained by hybridization of a well‐known antitubercular agent isoniazid (INH ) with four broad‐spectrum antibiotics belonging to fluoroquinolone (FQ ) class. The work is aimed at designing and developing potential antimicrobial agents having synergistic action due to the coupling of INH and FQ through the biologically active 1,3,4‐oxadiazole nucleus. The synthesized compounds are expected to have low toxicity as compared to INH due to the absence of free hydrazide group in the chemical structure of the prepared derivatives. The antibacterial activities of the 1,3,4 oxadiazole derivatives were also tested against several Gram‐positive and Gram‐negative pathogenic bacterial strains. The antitubercular activity was evaluated against M. tuberculosis H37Rv strain, and the results were compared with that of the positive control INH . The title compounds showed excellent antimicrobial and promising antitubercular activity in comparison to the parent fluoroquinolones and INH , respectively.  相似文献   

11.
A series of 1,2‐dihydroquinoxaline‐3‐yl‐3‐substitutedphenyl‐1H‐pyrazole‐4‐carbaldehyde were synthesized and evaluated for their antimicrobial activity against two Gram‐positive and two Gram‐negative organisms and two fungal organisms. The study has shown that pyrazole‐4‐carbaldehyde‐incorporated quinoxaline was essential for activity. Among the compounds, 5a , 5c , 5d had shown significant activity against all selected strains when compared with control. These compounds may prove useful as antimicrobial agents.  相似文献   

12.
Two novel cyclotriphosphazene ligands ( 2 and 3 ) bearing 3‐oxypyridine groups and their corresponding Ru(II) complexes ( 4 and 5 ) were synthesized and their structures were characterized using Fourier transform infrared, 1H NMR and 31P NMR spectroscopic data and elemental analysis. The Ru(II) complexes were used as catalysts for catalytic transfer hydrogenation of p‐substituted acetophenone derivatives in the presence of KOH. Additionally, the cytotoxic activities of compounds 2 , 3 , 4 , 5 were evaluated against PC3 (human prostate cancer), DLD‐1 (human colorectal cancer), HeLa (human cervical cancer) and PNT1A (normal human prostate) cell lines. Finally the antimicrobial activities of compounds 2 , 3 , 4 , 5 were evaluated against a panel of Gram‐positive and Gram‐negative bacteria and yeast cultures. The complexes showed efficient catalytic activity towards transfer hydrogenation of acetophenone derivatives, especially those bearing electron‐withdrawing substituents on the para‐position of the aryl ring. The compounds were found to have moderate to high cytotoxic and antimicrobial activities, and Ru(II) complexation enhanced both cytotoxic and antimicrobial activities in comparison with the parent compounds. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Novel steroidal (6R)‐spiro‐1,3,4‐thiadiazoline derivatives have been synthesized by the cyclization of steroidal thiosemicarbazones. Thiosemicarbazones have been synthesized by the reaction of steroidal ketones with thiosemicarbazide. All the compounds have been characterized by IR, 1H NMR, mass and elemental analyses. The antibacterial activities of these compounds have been first tested in vitro by the disk diffusion assay against two Gram‐positive and two Gram‐negative bacteria, and then the minimum inhibitory concentration (MIC) values have been determined with the reference of standard drug amoxicillin. The results showed that steroidal thiadiazoline derivatives exhibited better antibacterial activity than the steroidal thiosemicarbazone derivatives. Chloro and acetoxy substituents on the 3β‐position of the steroidal thiadiazoline ring increased the anti‐bacterial activity. Among all the compounds, compounds 7 and 8 were found better inhibitors as compared to the respective drug amoxicillin.  相似文献   

14.
In this study, we have synthesized 1‐(4,6‐disubstitutedpyrimidin‐2‐yl)‐3‐(3,5‐dinitrobenzoyl)‐thiourea derivatives ( 1a , 1b , 1c , 1d , 1e , 1f , 1g , 1h ) and N‐[(2Z)‐3‐(4,6‐disubstitutedpyrimidin‐2‐yl)‐4‐phenyl‐1,3‐thiazol‐2(3H)‐ylidene]‐3, 5‐dinitrobenzamide ( 2a‐2h ) analogues and characterized by IR spectroscopy, NMR spectroscopy, elemental analysis, and single crystal X‐ray diffraction data. The compounds ( 2a‐2h ) were screened for antimicrobial activity against Gram positive, Gram negative, and fungal species. The results of antimicrobial study indicated that compounds showed most potential and appreciable antibacterial and antifungal activities.  相似文献   

15.
A novel series of (4‐fluorophenyl)(4‐(naphthalen‐2‐yl)‐6‐aryl‐2‐thioxo‐2,3‐dihydropyrimidin‐1(6H)‐yl)methanone derivatives were synthesized from reaction of 6‐(naphthalen‐2‐yl)‐4‐aryl‐3,4‐dihydropyrimidine‐2(1H)‐thiones with 4‐fluorobenzoylchloride in dichloromethane in the presence of triethylamine. The synthesized compounds were screened for antibacterial activity against Gram positive bacteria, namely, Staphylococcus aureus ATCC25923 and Listeria monocytogenes MTCC657, and Gram negative bacteria, namely, Escherichia coli ATCC25922 and Klebsiella pneumoniae ATCC700603, respectively. Some of the tested compounds showed significant antimicrobial activity.  相似文献   

16.
Benzothiazole-tethered pyranopyrazoles derivatives were prepared via environmentally favorable conditions, which included eco-friendly catalyst, ethanol−water solvent, one-pot reaction, and atom- and step-economy procedures. Excellent yield of the products was observed. Besides, all products were screened for their antimicrobial behavior. From the biological results, it was seen that most of the compounds possessed high to moderate antimicrobial properties. Compound 6a gave prominent antimicrobial property followed by 6d , 6l , and 6n . In addition, computer-aided studies of the active compounds were also conducted. In this, selected compounds were docked into the intercalation site of DNA of the DNA−gyrase complex. From these results, the highest binding energy of −10.1 kcal/mol was for 6a against DNA−gyrase. This is the first eco-friendly synthetic method for the preparation of benzothiazole-pyranopyrazoles and the synthetic effort in this study may serve as a model for additional environmentally benign reactions. The biological results may prompt further studies related to antibiotic drugs.  相似文献   

17.
One pot three‐component reaction was assisted to form some new pyridopyrimidine derivatives to be investigated as antimicrobial and antitumor agents. The newly synthesized compounds showed high significant antimicrobial activity against the applied strains of both Gram‐positive and Gram‐negative bacteria and fungi. The cytotoxic activity of some compounds was evaluated as inhibitor of growth in both human liver carcinoma and breast cell lines. The results showed that some compounds exhibited very high cytotoxicity against human liver cell line and breast cancer cells.  相似文献   

18.
By the reaction of hydrazides of 4‐(4‐halogenophenyl)‐4H‐1,2,4‐triazol‐3‐yl‐sulfanyl acetic acid with isothiocyanate, 1‐acyl‐4‐substituted thiosemicarbazide derivatives ( 7–19 ) were obtained. The cyclization of compounds ( 7–19 ) in the presence of 2% NaOH led to the formation of compounds ( 20–26 ) containing two 1,2,4‐triazole rings connected by a methylenesulfanyl group. The new compounds were tested for their in vitro antimicrobial activity. Some of the tested compounds ( 9, 12, 18, 21, 22 ) showed activity against the reference strains of Gram‐positive bacteria with the MIC (minimal inhibitory concentration) = 125 to >1000 μg/mL. © 2011 Wiley Periodicals, Inc. Heteroatom Chem 23:117–121, 2012; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.20758  相似文献   

19.
A series of glycosylation and alkylation reactions of 6‐phenanthernyl‐2‐pyridone derivatives 1a , 1b containing electron withdrawing and electron donating substituents at 4‐position is reported. Regioselective 2‐O‐ alkylated/glycosylated products were obtained exclusively, irrespective of the electronic nature of alkylating or the glycosyling agent. Glycosylation of 1a , 1b with glucosyl/galactosyl and lactosyl bromides afforded 2a , 2b ; 4a , 4b ; and 6a , respectively. Alkylation of 1a , 1b with epichlorohydrin, propargyl, allyl bromides, and 3‐chloropropanol resulted in compounds 8 , 9 , 10 and 13 , respectively. Deprotection of O‐glycosylated products under conventional conditions provided the free glycosides 3a , 3b ; 5a , 5b ; 7a , 12 ; and 13 , respectively. The minimal inhibitory concentration for some of the newly synthesized compounds showed high significant activity against Gram (+ve) and Gram (−ve) and antifungal activities. Among the screened compounds, the 4‐trifluromethyl phenyl derivatives 2a , 3a , 4a , 8a , and 11a exhibited strong antimicrobial activity.  相似文献   

20.
Abstract

Acinetobacter baumannii has emerged as an important pathogen for nosocomial infections having high morbidity and mortality. This pathogen is notorious for antimicrobial resistance to many common antimicrobial agents including fluoroquinolones, which have both intrinsic and acquired resistance mechanisms. Fluoroquinolones targeting the bacterial topoisomerase II (DNA gyrase and Topo IV) show potent broad-spectrum antibacterial activity by the stabilization of the covalent enzyme–DNA complex. However, their efficacy is now being threatened by an increasing prevalence of resistance. Fluoroquinolones cause stepwise mutations in DNA gyrase and Topo IV, having alterations of their binding sites. Furthermore, the water–Mg+2 bridge, which provides enzyme–fluoroquinolone interactions, has a significant role in resistance. In this study, 13 compounds were synthesized as 1,4-benzoxazine derivatives which act as bacterial topoisomerase II inhibitors and their antibacterial activities were determined against multi-drug resistant Acinetobacter strains which have ciprofloxacin (CIP) resistant and GyrA mutation. Afterwards we performed docking studies with Topo IV (pdb:2XKK) of these compounds to comprehend their binding properties in Discovery Studio 3.5. The results of this study show significant conclusions to elucidate the resistance mechanism and lead to the design of new antibacterial agents as bacterial topoisomerase II inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号