首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nucleophilic trifluoromethylation of α‐imino ketones 2 , derived from arylglyoxal, with RuppertPrakash reagent (CF3SiMe3) offers a convenient access to the corresponding O‐silylated β‐imino‐α‐(trifluoromethyl) alcohols. In a ‘one‐pot’ procedure, by treatment with NaBH4, these products smoothly undergo reduction and desilylation yielding the expected β‐amino‐α‐(trifluoromethyl) alcohols 4 . The latter were used as starting materials for the synthesis of diverse trifluoromethylated heterocycles, including aziridines 5 , 1,3‐oxazolidines 8 , 1,3‐oxazolidin‐2‐ones 9 , 1,3,2‐oxazaphospholidine 2‐oxides 10 , 1,2,3‐oxathiazolidine 2‐oxides 11 , and morpholine‐2,3‐diones 12 . An optically active 5‐(trifluoromethyl)‐substituted 1,3‐oxazolidin‐2‐one 9g was also obtained.  相似文献   

2.
麻生明  段德慧 《中国化学》2002,20(11):1363-1368
IntroductionWiththefamousDIOPligand ,KaganintroducedtheimportantconceptofC2 symmetryinliganddesign .1However ,itisnotalwaystruethataC2 symmetricligandshouldnecessarilybesuperiortoanon symmetriccoun terpart .Transitionmetal catalyzedallylicalkylationviasymme…  相似文献   

3.
N‐(Alkoxycarbonyl)‐N‐glycosides (polyoxygenated semicyclic N,O‐acetals) were efficiently synthesized from regular acetyl or methyl glycosides (glucopyranoside, ribofuranoside, arabinofuranoside, and 2‐deoxyribofuranoside) and a carbamate by treatment of trimethylsilyl trifluoromethanesulfonate and 4 Å molecular sieves. It was found that these N‐glycosides underwent Lewis acid catalyzed ring‐opening reactions with silylated nucleophiles to give ring‐opened amino alcohols with good‐to‐high diastereoselectivity. The reactivity order, 2‐deoxyribofuranoside > arabinofuranoside > ribofuranoside > glucopyranoside, was revealed. Ring‐opening reductions were also investigated with silanes or diisobutylaluminium hydride. An appropriate reducing agent was found to be dependent on the N‐glycosides used. A glycosidase inhibitor, (2S,3R,4R)‐2‐hydroxymethylpyrrolidine‐3,4‐diol ( 7 ) was synthesized by means of the reactions.  相似文献   

4.
Trimethylsilyl, triethylsilyl, tert‐butyldimethylsilyl, and triisopropylsilyl 2‐methylprop‐2‐ene‐1‐sulfinates were prepared through (CuOTf)2?C6H6‐catalyzed sila‐ene reactions of the corresponding methallylsilanes with SO2 at 50 °C. Sterically hindered, epimerizable, and base‐sensitive alcohols gave the corresponding silyl ethers in high yields and purities at room temperature and under neutral conditions. As the byproducts of the silylation reaction (SO2+isobutylene) are volatile, the workup was simplified to solvent evaporation. The developed method can be employed for the chemo‐ and regioselective semiprotection of polyols and glycosides and for the silylation of unstable aldols. The high reactivity of the developed reagents is shown by the synthesis of sterically hindered per‐Otert‐butyldimethylsilyl‐α‐d ‐glucopyranose, the X‐ray crystallographic analysis of which is the first for a per‐O‐silylated hexopyranose. The per‐O‐silylation of polyols, hydroxy carboxylic acids, and carbohydrates with trimethylsilyl 2‐methylprop‐2‐ene‐1‐sulfinate was coupled with the GC analysis of nonvolatile polyhydroxy compounds both qualitatively and quantitatively.  相似文献   

5.
Nucleobase‐anion glycosylation of 2‐[(2‐methyl‐1‐oxopropyl)amino]imidazo[1,2‐a]‐1,3,5‐triazin‐4(8H)‐one ( 6 ) with 3,5‐di‐O‐benzoyl‐2‐deoxy‐2‐fluoro‐α‐D ‐arabinofuranosyl bromide ( 8 ) furnishes a mixture of the benzoyl‐protected anomeric 2‐amino‐8‐(2‐deoxy‐2‐fluoro‐D ‐arabinofuranosyl)imidazo[1,2‐a]‐1,3,5‐triazin‐4(8H)‐ones 9 / 10 in a ratio of ca. 1 : 1. After deprotection, the inseparable anomeric mixture 3 / 4 was silylated. The obtained 5‐O‐[(1,1‐dimethylethyl)diphenylsilyl] derivatives 11 and 12 were separated and desilylated affording the nucleoside 3 and its α‐D anomer 4 . Similar to 2′‐deoxy‐2′‐fluoroarabinoguanosine, the conformation of the sugar moiety is shifted from S towards N by the fluoro substituent in arabino configuration.  相似文献   

6.
A facile and practical method for synthesis of sugar oxazolines (=dihydrooxazoles) from the corresponding N‐acetyl‐2‐amino sugars has been developed by using 2‐chloro‐1,3‐dimethyl‐1H‐benzimidazol‐3‐ium chloride (CDMBI) as a dehydrative condensing agent. The intramolecular dehydrative reaction between the 2‐acetamido group and the anomeric OH group of unprotected N‐acetyl‐2‐amino sugars took place smoothly in H2O, leading to the formation of a 1,2‐oxazoline (=4,5‐dihydrooxazole) moiety in good yield. Since the reaction proceeds in H2O without using any protecting groups, the resulting oxazolines can be utilized as effective glycosyl donors for the subsequent enzymatic glycosylation. We have successfully demonstrated a highly efficient chemoenzymatic transglycosylation of a disialo‐oligosaccharide moiety to p‐nitrophenyl N‐acetylglucosaminide catalyzed by a mutant endo‐N‐acetylglucosaminidase without isolating disialo‐oligosaccharide oxazoline as synthetic intermediate.  相似文献   

7.
In our effort to develop coordination polymers (CPs)‐based single‐site catalysts for the selective synthesis of mono‐oxazolines, two Zn‐based CPs, [{Zn6(idbt)4(phen)4} ?3 H2O]n ( 1 ) and [{Zn3(idbt)2(H2O)4}?2 H2O]n ( 2 ) (H3idbt= 5,5′‐(1H‐imidazole‐4,5‐diyl)‐bis‐(2H‐tetrazole), phen=1,10‐phenanthroline) have been synthesized. They exhibit two‐dimensional structure and contain isolated and accessible catalytically active sites, mimicking the site isolation of many catalytic enzymes. Micro CPs 1 and 2 are obtained by using surfactant‐mediated hydrothermal methods, and an investigation is conducted to explore how different surfactants affect their morphologies and particle sizes. Furthermore, micro 1 and 2 have shown to be effective heterogeneous catalysts for the reaction of amino alcohols and aromatic dinitriles, and exerted a significant influence on the selectivity of the catalytic reactions, yielding mono‐oxazolines as the major reaction product.  相似文献   

8.
The syntheses and characterisation of a series of chiral and achiral 2‐(aminophenyl)‐2‐oxazolines and some related compounds is reported. All of the derivatives have been produced by a one‐step procedure involving the treatment of isatoic anhydride (i.e. [2H]‐3, 1‐benzoxazine‐[1H‐2,4‐dione: 1 ) or its 5‐chloro analogue with a slight excess of appropriate amino‐alcohols. In most cases, anhydrous ZnCl2 is shown to be an effective Lewis acid catalyst for this reaction at reflux temperature in high boiling aromatic solvents (PhCl or PhMe). Oxazolines have been readily formed using rac‐2‐amino‐1‐butanol, (S)‐phenylglycinol, 2‐methyl‐2‐amino‐1‐propanol and (1S,2R) or (IR,2S)‐cis‐ 1 ‐amino‐2‐indanol; yields range from 85% to 22%. The use of aminoalcohols such as 2‐ethanolamine, (±)‐2‐amino‐1‐phenyl‐1‐propanol or 3‐amino‐1‐propanol (to give the corresponding 4,5‐dihydro‐1,3‐oxazine) results in poor yields. The use of other Lewis acid catalysts (silicic acid, Cd(acac)2·2H2O, CuCl2·2H2O, InCl3) or higher temperatures did not improve the yields with these latter two substrates. Benzoxazoles and N‐substituted benzoxazoles can also be obtained in reasonable yields from 1 using 2‐aminophenol (36%) or 2‐amino‐3‐hydroxypyridine (45%).  相似文献   

9.
Several N‐acyl‐2‐benzoylaziridines were previously prepared conveniently and used in the preparation of 5‐benzoyl‐2,4‐diaryl oxazolines in the presence of NaI. In this work, synthesis of some trans‐4‐benzoyl‐2,5‐diaryl oxazolines by a regio‐controlled and stereo‐controlled reaction in the presence of Iron (III) nitrate at room temperature is reported. A plausible mechanism has been proposed for ring expansion of N‐acylaziridines to oxazolines.  相似文献   

10.
Monobenzoylation of triols (6‐O‐silylated glycopyranosides) or diols (4,6‐O‐benzylidenated glycopyranosides) with benzoyl chloride and triethylamine at ?60° to 23° is promoted by catalytic amounts of ditertiary 1,2‐diamines. The regioselectivity depends mostly on the structure of the alcohols; it is modulated by the configuration and constitution of the diamines, as shown by comparing the effect of Oriyama's catalyst ((S)‐ 1 and (R)‐ 1 ), N,N,N′,N′‐tetramethylethylenediamine (TMEDA), N,N,N′,N′‐tetraethylethylenediamine (TEEDA), Et3N, and EtNMe2. The effect of the catalysts on the reactivity is impaired by their steric hindrance. In agreement with the modest enantioselectivity of the mono‐ and dibenzoylation of rac‐cyclohexane‐1,2‐diol in the presence of Oriyama's catalyst, the influence of these diamines on the regioselectivity is rather limited. While associated with procedural simplicity, these catalysts lead, in a few cases, to higher yields of a single benzoate than established methods, viz. in the preparation of the 3‐O‐benzoyl β‐D ‐glucopyranoside 4 , the 2‐O‐benzoyl α‐D ‐galactopyranoside 22 , the 3‐O‐benzoyl α‐D ‐galactopyranoside 23 , and the benzylidenated 2‐O‐benzoyl α‐D ‐galactopyranoside 44 . The regioselective benzoylation of the benzylidenated β‐D ‐mannopyranoside 47 , leading to 48 , appears to be new.  相似文献   

11.
A facile one‐pot synthesis of 2,5‐disubstituted oxazoles was developed via cyclization of aldoximes and phenylacetylene then dehydrogenation oxidation. 2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone was studied for the selective oxidation of oxazolines using Cu2+/Li+ as catalyst and O2 as indirect oxidant. The reaction results showed that this catalyst system can effectively catalyze the oxidation of oxazolines to the corresponding oxazoles. Thus, a variety of polysubstituted oxazoles was easily synthesized in high yields by catalytic oxidation of 2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone/CuCl2/LiCl/O2.  相似文献   

12.
Convergent syntheses of the 9‐(3‐X‐2,3‐dideoxy‐2‐fluoro‐β‐D ‐ribofuranosyl)adenines 5 (X=N3) and 7 (X=NH2), as well as of their respective α‐anomers 6 and 8 , are described, using methyl 2‐azido‐5‐O‐benzoyl‐2,3‐dideoxy‐2‐fluoro‐β‐D ‐ribofuranoside ( 4 ) as glycosylating agent. Methyl 5‐O‐benzoyl‐2,3‐dideoxy‐2,3‐difluoro‐β‐D ‐ribofuranoside ( 12 ) was prepared starting from two precursors, and coupled with silylated N6‐benzoyladenine to afford, after deprotection, 2′,3′‐dideoxy‐2′,3′‐difluoroadenosine ( 13 ). Condensation of 1‐O‐acetyl‐3,5‐di‐O‐benzoyl‐2‐deoxy‐2‐fluoro‐β‐D ‐ribofuranose ( 14 ) with silylated N2‐palmitoylguanine gave, after chromatographic separation and deacylation, the N7β‐anomer 17 as the main product, along with 2′‐deoxy‐2′‐fluoroguanosine ( 15 ) and its N9α‐anomer 16 in a ratio of ca. 42 : 24 : 10. An in‐depth conformational analysis of a number of 2,3‐dideoxy‐2‐fluoro‐3‐X‐D ‐ribofuranosides (X=F, N3, NH2, H) as well as of purine and pyrimidine 2‐deoxy‐2‐fluoro‐D ‐ribofuranosyl nucleosides was performed using the PSEUROT (version 6.3) software in combination with NMR studies.  相似文献   

13.
Separation factors and thermodynamic data for the separation of various chiral analytes on different di‐Otert‐butyldimethyl‐silylated cyclodextrin derivatives are collected and described. Modifying the substitution pattern of the tert‐butyldimethylsilyl group in position 2 and 3 or changing from β‐ to γ‐cyclodextrin significantly affects the separation properties of the cyclodextrin derivatives.  相似文献   

14.
A one‐pot, two‐step synthesis of α‐O‐, S‐, and N‐substituted 4‐methylquinoline derivatives through Cu‐catalyzed aerobic oxidations of N‐hydroxyaminoallenes with alcohols, thiols, and amines is described. This reaction sequence involves an initial oxidation of N‐hydroxyaminoallenes with NuH (Nu=OH, OR, NHR, and SR) to form 3‐substituted 2‐en‐1‐ones, followed by Brønsted acid catalyzed intramolecular cyclizations of the resulting products. Our mechanistic analysis suggests that the reactions proceed through a radical‐type mechanism rather than a typical nitrone‐intermediate route. The utility of this new Cu‐catalyzed reaction is shown by its applicability to the synthesis of several 2‐amino‐4‐methylquinoline derivatives, which are known to be key precursors to several bioactive molecules.  相似文献   

15.
An efficient method for the one‐pot synthesis of 2‐oxazolines from ethyl α‐cyanocinnamate derivatives with N‐bromoacetamide in the presence of K3PO4 has been developed. The reaction performed smoothly and cleanly to give 2‐oxazolines in good to excellent yields (up to 98%) within 4.5 h in acetone at room temperature without protection of inert gases. A total of 13 examples have been investigated. A possible nucleophilic addition reaction mechanism is proposed.  相似文献   

16.
The isomeric 2‐substituted‐7(5)‐methyl‐2,3‐dihydro‐5(7)H‐oxazolo[3,2‐a]pyrimidin‐5‐ones 3a‐b and 7‐ones 2a‐b,7a were synthesized by cyclocondensation from the 5‐substituted‐2‐amino‐2‐oxazolines 1a‐b with biselectrophiles. In boiling ethanol, the reaction of 1a‐b with acetylenic esters led to a mixture of 2a‐b,7a with a small amount of (E)‐2‐N‐(2‐ethoxycarbonylethylene)‐5‐substituted‐2‐iminooxazolines 5a‐b . The ring annulation between 1a‐b and diketene gave the 2‐substituted‐7‐hydroxy‐7‐methyl‐2,3,6,7‐tetrahydro‐5H‐oxazolo[3,2‐ a ]pyrimidin‐5‐ones 4a‐b which can be easily dehydrated to provide the 2‐substituted‐7‐methyl‐2,3‐dihydro‐5H‐oxazolo[3,2‐a]pyrimidin‐5‐ones 3a‐b .  相似文献   

17.
Cyclization of N‐acyl‐2‐hydroxy‐2‐(trifluoromethyl)arylethylamines 4 under Pictet‐Gams conditions afforded 2‐oxazolines 5 instead of the expected isoquinolines 6 . The effect of the trifluoromethyl group on the result of the reaction is discussed.  相似文献   

18.
The molecules of 3‐amino‐4‐anilino‐1H‐isochromen‐1‐one, C15H12N2O2, (I), and 3‐amino‐4‐[methyl(phenyl)amino]‐1H‐isochromen‐1‐one, C16H14N2O2, (II), adopt very similar conformations, with the substituted amino group PhNR, where R = H in (I) and R = Me in (II), almost orthogonal to the adjacent heterocyclic ring. The molecules of (I) are linked into cyclic centrosymmetric dimers by pairs of N—H...O hydrogen bonds, while those of (II) are linked into complex sheets by a combination of one three‐centre N—H...(O)2 hydrogen bond, one two‐centre C—H...O hydrogen bond and two C—H...π(arene) hydrogen bonds.  相似文献   

19.
Optically active (perfluoroalkyl)‐oxazepin‐7‐ones were synthesized in two steps starting from ethyl perfluorobut‐2‐ynoate by direct addition of optically active amino alcohols via intermolecular Michael addition and lactone formation.  相似文献   

20.
Efficient ruthenium‐, rhodium‐, palladium‐, copper‐ and iridium‐catalysed methodologies have been recently developed for the synthesis of quinolines by the reaction of 2‐aminobenzyl alcohols with carbonyl compounds (aldehydes and ketones) or the related alcohols. The reaction is assumed to proceed via a sequence involving initial metal‐catalysed oxidation of 2‐aminobenzyl alcohols to the related 2‐aminobenzaldehydes, followed by cross aldol reaction with a carbonyl compound under basic conditions to afford α,β‐unsaturated carbonyl compounds. These aldehydes or ketones can be also generated in situ via dehydrogenation of the related primary and secondary alcohols. In the final step cyclodehydration of the α,β‐unsaturated carbonyl compound intermediates gives quinolines. Good yields of quinolines were also obtained by reacting 2‐nitrobenzyl alcohols and secondary alcohols in the presence of a ruthenium catalyst. Finally, aniline derivatives afforded also a useful access to quinolines by the reaction with 1,3‐propanediol or 3‐amino‐1‐propanol, or in a three‐component reaction with benzyl alcohol and aliphatic alcohols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号