共查询到20条相似文献,搜索用时 0 毫秒
1.
Feng‐Li He Xudong Deng Ya‐Qing Zhou Tuo‐Di Zhang Ya‐Li Liu Ya‐Jing Ye Da‐Chuan Yin 《先进技术聚合物》2019,30(2):425-434
Wound dressing, which can release anti‐infectives in a controlled way, is taking an important role in the treatment and recovery of the open wound. An adequate release of antibiotics can prevent infections from microorganisms effectively. Among the new candidates of fabricating base materials for wound dressing, electrospinning fiber mats are attracting numerous attentions for their excellent performance in controlled drug delivery. The drug release behavior of electrospinning fiber mats can be tuned by changing the chemical components and the geometric structures of the mats. In this study, fiber mats with different geometric structures, which composed of poly‐ε‐caprolactone (PCL), polyethylene glycol (PEG), and ciprofloxacin (Cip) with different blending ratios, were successfully fabricated by direct‐writing melt electrospinning, and the release behavior of Cip were subsequently investigated in vitro. The results showed that the addition of PEG improved the hydrophilicity of the mats, which in turn affected the manner of drug release. The presence of PEG changed the releasing mechanism from a non‐Fickian diffusion into Fickian diffusion, which indicated that the diffusion of Cip from the composite fiber mats became the main factor of drug release instead of polymer degradation. Besides, with the same composition but different geometric structures, the drug release behavior is of significant difference. Therefore, all the Cip‐loaded composite fiber mats showed antibacterial activities but with different efficiency. In summary, the release of the drug could be controlled by adding PEG and changing the geometric structures according to the different requirement of wound dressings. 相似文献
2.
Isabel C. Gouveia 《先进技术聚合物》2012,23(3):350-356
Proteinaceous microspheres have a wide range of biomedical applications, including their use as drug delivery systems. On the other hand, bioactive and antimicrobial textiles are promising substrates for medical care, in particular, as wound‐dressings. This work relates the development of a new process for the functionalization of textiles through the simultaneous formation and linkage of protein‐based microspheres onto textile fibers by sonochemical techniques. The microspheres developed by this process possess antimicrobial properties by themselves, but other may be incorporated by the encapsulation of various pharmaceutical formulations. This new type of microspheres and particularly their fixation onto textile materials encourage the development of textiles that can be used as delivery systems in a simple, fast, and non‐toxic process. Here it is reported the production of microspheres with a combination of bovine serum albumin (BSA), L ‐Cysteine (L ‐Cys), and n‐dodecane, using the ultrasound technology. The size distribution and morphology of the microspheres was determined as a function of several parameters such as irradiation time and BSA and L ‐Cys concentrations. The produced microspheres were analyzed using a laser light scattering size analyzer, an optical microscope and a scanning electron microscope. The new coating of BSA + L ‐Cys microspheres revealed a high stability and excellent antibacterial properties being a promising alternative to design textile‐based bioactive delivery systems with potential application in the development of textile‐based wound‐dressings. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
3.
Jiun‐Tang Huang Li Hannah‐Qiuhua Renata Szyszka Vladimir Veselov Gail Reed Xiande Wang Sylvester Price Lori Alquier Gyorgy Vas 《Journal of mass spectrometry : JMS》2012,47(2):155-162
A molecular imaging application was developed to characterize the drug distribution on CYPHER® and NEVO? Drug‐eluting Stents using MALDI Qq‐ToF analytical methodology. The coating matrix, laser energy, laser frequency, spatial resolution (related to rastering speed) and mass spectrometer parameters were optimized to analyze drug distribution in both durable and biodegradable polymer matrices. The developed method was extended to generate data from stents explanted from porcine coronary arteries. Due to the method's intrinsic specificity, it offers a significant advantage over other techniques in that it allows low‐level detection of the target molecule without biological interferences from the blood or tissue. The method is also capable of detecting drug‐related degradation products both from the finished stent product and from explanted stents. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
4.
Bin Mu Peng Liu Pengcheng Du Yun Dong Chunyin Lu 《Journal of polymer science. Part A, Polymer chemistry》2011,49(9):1969-1976
Novel magnetic‐targeted pH‐responsive drug delivery system have been designed by the layer‐by‐layer self‐ assembly of the polyelectrolytes (oligochitosan as the polycation and sodium alginate as the polyanion) via the electrostatic interaction with the oil‐in‐water type hybrid emulsion droplets containing the superparamagnetic ferroferric oxide nanoparticles and drug molecules [dipyridamole (DIP)] as cores. Here the drug molecules were directly encapsulated into the interior of droplets without etching the templates and refilling with the desired guest molecules. The drug‐delivery system showed high encapsulation efficiency of drugs and drug‐loading capacity. The cumulative release ratio of dipyridamole from the oligochitosan/sodium alginate multilayer‐encapsulated magnetic hybrid emulsion droplets (DIP/Fe3O4‐OA/OA)@(OCS/SAL)4 was up to almost 100% after 31 h at pH 1.8. However, the cumulative release ratio was only 3.3% at pH 7.4 even after 48 h. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
5.
Valeriy Luchnikov Leonid lonov Manfred Stamm 《Macromolecular rapid communications》2011,32(24):1943-1952
Recent work on the fabrication of tubular microstructures via self‐rolling of thin, bilayer polymer films is reviewed. A bending moment in the films arises due to the swelling of one component of the bilayer in a selective solvent. The inner diameters of the tubes vary from hundreds of nanometers to dozens of micrometers. The position of the tubes on the substrate and their length can be preset by photolithographic patterning of the bilayer. Prior to rolling, the bilayers can be exposed to different methods of surface functionalization, providing opportunities for engineering the microtube inner surfaces for use in microfluidic circuits and “microbiological” applications. The self‐rolling approach is promising for the development of novel drug‐ and cell‐delivery systems, as well as for tissue engineering. 相似文献
6.
Infection is one of the major risk factors for the development of chronic wounds. Antimicrobial wound dressing has been pointed out as a viable option for the prevention and treatment of wound infections. Thus, we developed a composite material based on cotton textile substrates functionalized with cyclodextrin‐hydroxypropyl methyl cellulose‐based hydrogel. The composites' ability to encapsulate and release gallic acid (antimicrobial phenolic acid) was evaluated, as well as their mechanical properties and antimicrobial and anti‐inflammatory capacity. All composites were able to retain gallic acid in their structure, with similar loading profile. The presence of gallic acid on composites was confirmed by FTIR and TGA. Composites storage moduli was reduced by the presence of gallic acid. The results suggest a straight relation between the swelling ability and gallic acid drug delivery profile. The drug delivery mechanism, of the developed composites, was mainly controlled by Fickian diffusion, based on the experimental data fitting to the Peppas‐Sahlin model. Gallic acid antimicrobial and anti‐inflammatory properties were transferred to the composite materials. According to the results, the developed composites can be applied on the prevention or treatment of chronic wounds. 相似文献
7.
Jianhua Zhou Dong Choon Hyun Hang Liu Hongkai Wu Younan Xia 《Macromolecular rapid communications》2014,35(16):1436-1442
This paper describes a method for fabricating protein‐based capsules with semipermeable and enzyme‐degradable surface barriers. It involves the use of a simple fluidic device to generate water‐in‐oil emulsion droplets, followed by cross‐linking of proteins at the water–oil interface to generate a semipermeable surface barrier. The capsules can be readily fabricated with uniform and controllable sizes and, more importantly, show selective permeability toward molecules with different molecular weights: small molecules like fluorescein sodium salt can freely diffuse through the surface barrier while macromolecules such as proteins can not. The proteins, however, can be released by digesting the surface barrier with an enzyme such as pepsin. Taken together, the capsules hold great potential for applications in controlled release, in particular, for the delivery of protein drugs.
8.
Moritz Beck‐Broichsitter Marcel Thieme Juliane Nguyen Thomas Schmehl Tobias Gessler Werner Seeger Seema Agarwal Andreas Greiner Thomas Kissel 《Macromolecular bioscience》2010,10(12):1527-1535
Novel ‘nano in nano’ composites consisting of biodegradable polymer nanoparticles incorporated into polymer nanofibers may efficiently modulate drug delivery. This is shown here using a combination of model compound‐loaded biodegradable nanoparticles encapsulated in electrospun fibers. The dye coumarin 6 is used as model compound for a drug in order to simulate drug release from loaded poly(lactide‐co‐glycolide) nanoparticles. Dye release from the nanoparticles occurs immediately in aqueous solution. Dye‐loaded nanoparticles which are encapsulated by electrospun polymer nanofibers display a significantly retarded release.
9.
Protein Delivery System Containing a Nickel‐Immobilized Polymer for Multimerization of Affinity‐Purified His‐Tagged Proteins Enhances Cytosolic Transfer 下载免费PDF全文
Dr. Viktoriia Postupalenko Dr. Dominique Desplancq Dr. Igor Orlov Dr. Youri Arntz Dr. Danièle Spehner Dr. Yves Mely Dr. Bruno P. Klaholz Dr. Patrick Schultz Dr. Etienne Weiss Dr. Guy Zuber 《Angewandte Chemie (International ed. in English)》2015,54(36):10583-10586
Recombinant proteins with cytosolic or nuclear activities are emerging as tools for interfering with cellular functions. Because such tools rely on vehicles for crossing the plasma membrane we developed a protein delivery system consisting in the assembly of pyridylthiourea‐grafted polyethylenimine (πPEI) with affinity‐purified His‐tagged proteins pre‐organized onto a nickel‐immobilized polymeric guide. The guide was prepared by functionalization of an ornithine polymer with nitrilotriacetic acid groups and shown to bind several His‐tagged proteins. Superstructures were visualized by electron and atomic force microscopy using 2 nm His‐tagged gold nanoparticles as probes. The whole system efficiently carried the green fluorescent protein, single‐chain antibodies or caspase 3, into the cytosol of living cells. Transduction of the protease caspase 3 induced apoptosis in two cancer cell lines, demonstrating that this new protein delivery method could be used to interfere with cellular functions. 相似文献
10.
Although classical platinum drugs such as cisplatin, carboplatin and oxaliplatin play a vitally important role in cancer treatment, nonselective distribution of platinum drugs in normal and tumor cells can induce serious gastrointestinal reaction, nephrotoxicity, ototoxicity, neurotoxicity and cross resistance, limiting their applications. Over the past few years, a great number of platinum complexes of non‐classical structures have been extensively investigated and evaluated in vitro and in vivo, some of them exhibiting considerable activity. In this review, platinum‐based complexes with non‐classical structures which have anticancer potential are described and several representative examples are discussed with their mechanism of action. 相似文献
11.
《Journal of polymer science. Part A, Polymer chemistry》2018,56(12):1199-1209
Over the past 10 years poly‐(polyol alkanoate)s elastomers have intensively been investigated due to their extraordinary potential for soft tissue engineering applications. In this work, a family of novel hyperbranched elastomers based on pentaerythritol and adipic acid, modified with PEG of 200 and 400 Da, is synthesized. The polymers are obtained by a simple 2 steps thermal process that avoids the use of toxic catalysts. Noteworthy, elastomers properties can be finely tuned by adjusting the molar ratio of monomers and curing conditions. The elastomers, which are fully characterized by standard methods, show excellent results in the in vitro controlled release of Paclitaxel. Cell culture assays indicate that all materials are able to inhibit lung cancer cell proliferation and that the release of Paclitaxel reduce cancer cell viability, indicating that the elastomers prepared hereby are good candidates for their use as eluting systems in long term cancer treatment. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1199–1209 相似文献
12.
A novel oral delivery system consisting of thermoresponsive zwitterionic poly(sulfobetaine methacrylate) (PSBMA) and pH‐responsive poly(2‐(diisopropylamino)ethyl methacrylate) (PDPA) is synthesized via free radical polymerization. This copolymer can self‐aggregate into nanoparticles via electrostatic attraction between ammonium cation and sulfo‐anion of PSBMA and successfully encapsulate anticancer drug, curcumin (CUR), with highest loading content of 2.6% in the P(SBMA‐co‐DPA) nanoparticles. The stimuli‐responsive phase transition behaviors of P(SBMA‐co‐DPA) copolymers at different pH buffer solution show pH‐dependent upper critical solution temperature (UCST) attributed to the influence of protonation/deprotonation of the pH‐responsive DPA segments. Through the delicate adjustment of the PSBMA/PDPA molar ratios, the stimuli‐responsive phase transition could be suitable for physiological environment. The kinetic drug release profiles demonstrate that P(SBMA‐co‐DPA) nanoparticles have the potential as oral delivery carriers due to their effective release of entrapped drugs in the stimulated intestinal fluid and preventing the deterioration of drug in stimulated gastric fluid.
13.
In the present research, we have investigated a drug delivery system based on the pH‐responsive behaviors of zein colloidal nanoparticles coated with sodium caseinate (SC) and poly ethylene imine (PEI). These systematically designed nanoparticles were used as nanocarriers for encapsulation of ellipticine (EPT), as an anticancer drug. SC and PEI coatings were applied through electrostatic adsorption, leading to the increased size and improved polydispersity index of nanoparticles as well as sustained release of drug. Physicochemical characteristics such as hydrodynamic diameter, size distribution, zeta potential and morphology of nanoparticles prepared using different formulations and conditions were also determined. Based on the results, EPT was encapsulated into the prepared nanoparticles with a high drug loading capacity (5.06%) and encapsulation efficiency (94.8%) under optimal conditions. in vitro experiments demonstrated that the release of EPT from zein‐based nanoparticles was pH sensitive. When the pH level decreased from 7.4 to 5.5, the rate of drug release was considerably enhanced. The mechanism of pH‐responsive complexation in the drug encapsulation and release processes was extensively investigated. The pH‐dependent electrostatic interactions and drug state were hypothesized to affect the release profiles. Compared to the EPT‐loaded zein/PEI nanoparticles, the EPT‐loaded zein/SC nanoparticles exhibited a better drug sustained‐release profile, with a smaller initial burst release and longer release period. According to the results of in vitro cytotoxicity experiments, drug‐free nanoparticles were associated with a negligible cytotoxicity, whereas the EPT‐loaded nanoparticles displayed a high toxicity for the cancer cell line, A549. Our findings indicate that these pH‐sensitive protein‐based nanoparticles can be used as novel nanotherapeutic tools and potential antineoplastic drug carriers for cancer chemotherapy with controlled release. 相似文献
14.
《Biomedical chromatography : BMC》2018,32(6)
In this study, a liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and validated to simultaneously determine the anticancer drugs etoposide and paclitaxel in mouse plasma and tissues including liver, kidney, lung, heart, spleen and brain. The analytes were extracted from the matrices of interest by liquid–liquid extraction using methyl tert‐butyl ether–dichloromethane (1:1, v/v). Chromatographic separation was achieved on an Ultimate XB‐C18 column (100 × 2.1 mm, 3 μm) at 40°C and the total run time was 4 min under a gradient elution. Ionization was conducted using electrospray ionization in the positive mode. Stable isotope etoposide‐d3 and docetaxel were used as the internal standards. The lower limit of quantitation (LLOQ) of etoposide was 1 ng/g tissue for all tissues and 0.5 ng/mL for plasma. The LLOQ of paclitaxel was 0.4 ng/g tissue and 0.2 ng/mL for all tissues and plasma, respectively. The coefficients of correlation for all of the analytes in the tissues and plasma were >0.99. Both intra‐ and inter‐day accuracy and precision were satisfactory. This method was successfully applied to measure plasma and tissue drug concentrations in mice treated with etoposide and paclitaxel‐loaded self‐microemulsifying drug‐delivery systems. 相似文献
15.
Peng‐Fei Gou Wei‐Pu Zhu Ning Xu Zhi‐Quan Shen 《Journal of polymer science. Part A, Polymer chemistry》2009,47(24):6962-6976
Well‐defined drug‐conjugated amphiphilic A2B2 miktoarm star copolymers [(PCL)2‐(PEG)2‐D] were prepared by the combination of controlled ring‐opening polymerization (CROP) and “click” reaction strategy. First, bromide functionalized poly(ε‐caprolactone) (PCL‐Br) with double hydroxyl end groups was synthesized by the CROP of ε‐caprolactone using 2,2‐bis(bromomethyl)propane‐1,3‐diol as a difunctional initiator in the presence of Sn(Oct)2 at 110 °C. Next, the bromide groups of PCL‐Br were quantitatively converted to azide form by NaN3 to give PCL‐N3. Subsequently, the end hydroxyl groups of PCL‐N3 were capped with ibuprofen as a model drug at room temperature. Finally, copper(I)‐catalyzed cycloaddition reaction between ibuprofen‐conjugated PCL‐N3 and slightly excess alkyne‐terminated poly(ethylene glycol) (A‐PEG) led to ibuprofen‐conjugated A2B2 miktoarm star copolymer [(PCL)2‐(PEG)2‐D]. The excess A‐PEG was removed by dialysis. 1H NMR, FTIR and SEC analyzes confirmed the expected miktoarm star architecture. These amphiphilic miktoarm star copolymers could self‐assemble into multimorphological aggregates in aqueous solution, which were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). In addition, the drug‐loading capacity of these drug‐conjugated miktoarm star copolymers as well as their nondrug‐conjugated analogs were also investigated in detail. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009 相似文献
16.
A Multivalent Ligand for the Mannose‐6‐Phosphate Receptor for Endolysosomal Targeting of an Activity‐Based Probe 下载免费PDF全文
Dr. Sascha Hoogendoorn Dr. Gijs H. M. van Puijvelde Prof. Dr. Johan Kuiper Prof. Dr. Gijs A. van der Marel Prof. Dr. Herman S. Overkleeft 《Angewandte Chemie (International ed. in English)》2014,53(41):10975-10978
The ubiquitously expressed mannose‐6‐phosphate receptors (MPRs) are a promising class of receptors for targeted compound delivery into the endolysosomal compartments of a variety of cell types. The development of a synthetic, multivalent, mannose‐6‐phosphate (M6P) glycopeptide‐based MPR ligand is described. The conjugation of this ligand to fluorescent DCG‐04, an activity‐based probe for cysteine cathepsins, enabled fluorescent readout of its receptor‐targeting properties. The resulting M6P‐cluster–BODIPY–DCG‐04 probe was shown to efficiently label cathepsins in cell lysates as well as in live cells. Furthermore, the introduction of the 6‐O‐phosphates leads to a completely altered uptake profile in COS and dendritic cells compared to a mannose‐containing ligand. Competition with mannose‐6‐phosphate abolished all uptake of the probe in COS cells, and we conclude that the mannose‐6‐phosphate cluster targets the MPR and ensures the targeted delivery of cargo bound to the cluster into the endolysosomal pathway. 相似文献
17.
Lin Sun Lin‐Jing Shen Ming‐Qiang Zhu Chang‐Ming Dong Yen Wei 《Journal of polymer science. Part A, Polymer chemistry》2010,48(20):4583-4593
Biocompatible and biodegradable ABC and ABCBA triblock and pentablock copolymers composed of poly(ε‐caprolactone) (PCL), poly(L ‐lactide) (PLA), and poly(ethylene glycol) (PEO) with controlled molecular weights and low polydispersities were synthesized by a click conjugation between alkyne‐terminated PCL‐b‐PLA and azide‐terminated PEO. Their molecular structures, physicochemical and self‐assembly properties were thoroughly characterized by means of FT‐IR, 1H‐NMR, gel permeation chromatography, differential scanning calorimetry, wide‐angle X‐ray diffraction, dynamic light scattering, and transmission electron microscopy. These copolymers formed microphase‐separated crystalline materials in solid state, where the crystallization of PCL block was greatly restricted by both PEO and PLA blocks. These copolymers self‐assembled into starlike and flowerlike micelles with a spherical morphology, and the micelles were stable over 27 days in aqueous solution at 37 °C. The doxorubicin (DOX) drug‐loaded nanoparticles showed a bigger size with a similar spherical morphology compared to blank nanoparticles, demonstrating a biphasic drug‐release profile in buffer solution and at 37 °C. Moreover, the DOX‐loaded nanoparticles fabricated from the pentablock copolymer sustained a longer drug‐release period (25 days) at pH 7.4 than those of the triblock copolymer. The blank nanoparticles showed good cell viability, whereas the DOX‐loaded nanoparticles killed fewer cells than free DOX, suggesting a controlled drug‐release effect. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010 相似文献
18.
Dr. Wenpei Fan Dr. Bryant C. Yung Prof. Xiaoyuan Chen 《Angewandte Chemie (International ed. in English)》2018,57(28):8383-8394
Featuring high biocompatibility, the emerging field of gas therapy has attracted extensive attention in the medical and scientific communities. Currently, considerable research has focused on the gasotransmitter nitric oxide (NO) owing to its unparalleled dual roles in directly killing cancer cells at high concentrations and cooperatively sensitizing cancer cells to other treatments for synergistic therapy. Of particular note, recent state‐of‐the‐art studies have turned our attention to the chemical design of various endogenous/exogenous stimuli‐responsive NO‐releasing nanomedicines and their biomedical applications for on‐demand NO‐sensitized synergistic cancer therapy, which are discussed in this Minireview. Moreover, the potential challenges regarding NO gas therapy are also described, aiming to advance the development of NO nanomedicines as well as usher in new frontiers in this fertile research area. 相似文献
19.
Investigation of Functionalized Poly(N,N‐dimethylacrylamide)‐block‐polystyrene Nanoparticles As Novel Drug Delivery System to Overcome the Blood–Brain Barrier In Vitro 下载免费PDF全文
Maria Gregori Daniela Bertani Emanuela Cazzaniga Antonina Orlando Michele Mauri Alberto Bianchi Francesca Re Silvia Sesana Stefania Minniti Maura Francolini Alfredo Cagnotto Mario Salmona Luca Nardo Domenico Salerno Francesco Mantegazza Massimo Masserini Roberto Simonutti 《Macromolecular bioscience》2015,15(12):1687-1697
20.
SPILLO‐PBSS: Detecting hidden binding sites within protein 3D‐structures through a flexible structure‐based approach 下载免费PDF全文
Alessandro Vitriolo Giulio Vistoli Alessandro Pedretti 《Journal of computational chemistry》2014,35(27):2005-2017
The study reports a flexible structure‐based approach aimed at identifying binding sites within target proteins starting from a well‐defined reference binding site. The method, named SPILLO potential binding sites searcher (SPILLO‐PBSS), includes a suitably designed tolerance which allows an efficient recognition of the potential binding sites regardless of both involved residues and protein conformation. Hence, the proposed method overcomes the rigidity which affects the available approaches and which prevents a proper analysis of distorted binding sites. We apply SPILLO‐PBSS to several test cases, including the search for the guanosine diphosphate binding site in distorted H‐Ras proteins and the identification of acetylcholine binding proteins from among a library of heterogeneous resolved proteins. Tests are also performed to compare SPILLO‐PBSS with other related and available methods. The encouraging results confirm the notable potentialities of this approach and lay the foundation for its use to analyze and predict target proteins on a proteome‐wide scale. © 2014 Wiley Periodicals, Inc. 相似文献