首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, silicone‐coated intumescent flame retardants was prepared by an efficient and simple approach, aiming at enhancing the flame‐retardant efficiency and smoke suppression properties. The surface of expandable graphite (EG) was treated prior to the coverage of nonflammable silicone. The resultant silicone‐modified EG hybrid (SEG) was combined with ammonium polyphosphate (APP) and applied as a flame‐retardant and smoke‐suppressant for ultrahigh molecular weight polyethylene (UHMWPE). Compared with UHMWPE/APP/EG (with 15 wt% APP/EG), UHMWPE/APP/SEG (with 15 wt% APP/SEG) gives decrement by 18.5% in the peaks of the heat release rate, 6.33% in total heat release and 13.6% in total smoke release, whereas increment by 23% in tensile strength and 12.1% in elongation at break, respectively. It is suggested that the introduction of silicone on the surface of EG can improve the interfacial compatibility between EG and UHMWPE. Moreover, it can lead to forming more char residue and reducing the release of smoke particulates during combustion process of the composites.  相似文献   

2.
In this work, an organic inorganic hybrid intumescent flame retardant (functionalized expandable graphite, FEG) was synthesized and characterized by Fourier transform infrared spectrometry (FTIR). The flame retardant effects of FEG in silicone rubber (SR) composites were investigated by cone calorimeter test (CCT), and the thermal stability of SR composites was studied using TGA. The CCT results showed that FEG can effectively reduce the flammable properties including peak heat release rate (PHRR), total heat release (THR), smoke production rate (SPR), total smoke release (TSR), and smoke factor (SF). An improvement of thermal stability of SR/FEG was also observed. Compared with EG, FEG can further reduce THR, SPR, and TSR of SR/FEG composites in combustion process. Moreover, there is a more obvious intumescent char layer formed from the sample with FEG than the sample with EG at the same loading in SR composites. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
A novel inorganic and organic composite flame retardant (9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide [DOPO]–layered double hydroxide [LDH]) was synthesized via grafting DOPO with organic‐modified Mg/Al‐LDH, which was introduced into poly (methyl methacrylate) (PMMA) resin to prepare the flame‐retardant PMMA composites. Thermogravimetric analyzer (TGA) showed that the T‐50% of DOPO‐LDH/PMMA composites enhanced by about 20°C, and with the 20% flame retardant, the residual char content can be increased by 39.8% in the air atmosphere compared with LDH/PMMA composites. In the UL‐94 and the limiting oxygen index (LOI) tests, it can be found that compared with LDH/PMMA composites, the LOI value of DOPO‐LDH/PMMA composites were raised evidently with the increased flame retardants, and the droplet combustion was greatly improved. These results could be ascribed to the action of DOPO free‐radical, catalytic charring of polymer and the effect of LDH physical barrier. Moreover, the novel DOPO‐LDH not only given PMMA a good flame‐retardant property and thermal stability, but also have higher visible light transmittance, ultraviolet‐shielding effect, and low loss of mechanical properties, which could further facilitate the wide application of inorganic environment‐friendly flame retardants in general resins and engineering resins and broaden the application of polymers.  相似文献   

4.
《先进技术聚合物》2018,29(1):641-648
To explore the component synergistic effect of boron/phosphorus compounds in epoxy resin (EP), 3 typical boron compounds, zinc borate (ZB), boron phosphate (BPO4), and boron oxide (B2O3), blended with phosphaphenanthrene compound TAD were incorporated into EP, respectively. All 3 boron/phosphorus compound systems inhibited heat release and increased residue yields and exerted smoke suppression effect. Among 3 boron/phosphorus compound systems, B2O3/TAD system brought best flame‐retardant effect to epoxy thermosets in improving the UL94 classification of EP composites and also reducing heat release most efficiently during combustion. B2O3 can interact with epoxy matrix and enhance the charring quantity and quality, resulting in obvious condensed‐phase flame‐retardant effect. The combination of condensed‐phase flame‐retardant effect from B2O3 and the gaseous‐phase flame‐retardant effect from TAD effectively optimized the action distribution between gaseous and condensed phases. Therefore, B2O3/TAD system generated component synergistic flame‐retardant effect in epoxy thermosets.  相似文献   

5.
《先进技术聚合物》2018,29(1):668-676
A phosphorous‐nitrogen intumescent flame‐retardant, 2,2‐diethyl‐1,3‐propanediol phosphoryl melamine (DPPM), was synthesized and characterized by Fourier transform infrared spectroscopy and nuclear magnetic resonance. Flame‐retardant rigid polyurethane foams (RPUFs) with DPPM (DPPM‐RPUF) as fire‐retardant additive were prepared. Scanning electron microscope (SEM) and mechanical performance testing showed that DPPM exhibited a favorable compatibility with RPUF and negligibly negative influence on the mechanical properties of RPUF. The flame retardancy of DPPM on RPUF was investigated by the limiting oxygen index (LOI), vertical burning test and cone calorimeter. The LOI of DPPM‐RPUF could reach 29.5%, and a UL‐94 V‐0 rating was achieved, when the content of DPPM was 25 php. Furthermore, the DPPM‐RPUF exhibited an outstanding water resistance that it could still obtain a V‐0 rating after water soaking. Thermogravimetric analysis showed that the residual weight of RPUF was relatively low, while the charring ability of DPPM‐RPUF was improved greatly. Real‐time Fourier transform infrared spectroscopy was employed to study the thermo‐oxidative degradation reactions of DPPM‐RPUF. The results revealed that the flame‐retardancy mechanism of DPPM in RPUF was based on the surface charred layer acting as a physical barrier, which slowed down the decomposition of RPUF and prevented the heat and mass transfer between the gas and the condensed phases.  相似文献   

6.
The flame retardancy of a novel intumescent flame‐retardant polypropylene (IFR‐PP) system, which was composed of a charring agent (CA), ammonium polyphosphate (APP), and polypropylene (PP), could be enhanced significantly by adding a small amount (1.0 wt%) of an organic montmorillonite (O‐MMT). The synergistic flame‐retardant effect was studied systematically. The thermal stability and combustion behavior of the flame‐retarded PP were also investigated by thermogravimetric analysis (TGA), limiting oxygen index (LOI), vertical burning test (UL‐94), scanning electronic microscopy (SEM), and cone calorimeter test (CCT). TGA results demonstrated that the onset decomposition temperatures of IFR‐PP samples, with or without O‐MMT, were higher than that of neat PP. Compared with IFR‐PP, the LOI value of IFR‐PP containing 1.0 wt% O‐MMT was increased from 30.8 to 33.0, and the UL‐94 rating was also enhanced to V‐0 from V‐1 when the total loading of flame retardant was the same. The cone calorimeter results showed that the IFR‐PP with 1.0 wt% of O‐MMT had the lowest heat release rate (HRR), total heat release (THR), total smoke production (TSP), CO production (COP), CO2 production (CO2P), and mass loss (ML) of all the studied IFR‐PP samples, with or without O‐MMT. All these results indicated that O‐MMT had a significantly synergistic effect on the flame‐retardancy of IFR‐PP at a low content of O‐MMT. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Ferric pyrophosphate (FePP) was added to an ammonium polyphosphate (APP)—pentaerythritol (petol) intumescent flame retardant (IFR) system in polypropylene (PP) matrix, with subsequent investigation into the synergistic effect between FePP and the IFRs. Limited oxygen index (LOI), UL‐94 test and cone calorimeter test were employed to study the flame retardance of the synthesized flame retardant PP composites. Thermogravimetric analysis (TGA) and thermogravimetric analysis‐infrared spectrometry (TG‐IR) were used to study their thermal degradation characteristics and gas products. TG‐IR results demonstrate that there is no Fe (CO)5 produced from PP/IFR/FePP system, which implies that the flame retardant mechanism of PP/IFR/FePP system is in the condensed phase rather than in the gas phase. Real time FTIR and X‐ray photoelectron spectroscopy (XPS) were used to monitor the thermal oxidative stability and the high temperature performance of the flame retardant PP composites. The real time FTIR spectra show that all peaks around 2900 cm?1 almost disappear at 380°C for the PP/IFR system, meaning that PP decomposes completely at this temperature. But after the addition of 2 wt%wt% FePP, the peaks still exist till 400°C. XPS shows that the aliphatic carbon atom content in PP/23 wt%wt% IFR/2 wt%wt% FePP (63.8%) is much higher than the one without FePP, and the total oxygen atom content in PP/23 wt%wt% IFR/2 wt%wt% FePP is just 19.1%, while the one in PP/25 wt% IFR is as high as 35.7%. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
In order to explore the structure mode of intumescent flame retardants (IFRs) with higher efficiency, IFR particles with joint‐aggregation structure (@IFR) were obtained through the treatment of ammonium polyphosphate (APP) and a charring agent (PT‐Cluster) in their aqueous solution. Then, the joint‐aggregation IFR effect was researched using its application in polypropylene. In case of 20 wt% IFR loading, the limiting oxygen index (LOI) value of @IFR/PP was 1.1% higher than that of 15APP/5PT‐Cluster/PP mixture, and a 1.6 mm‐thick @IFR/PP composite passed the UL 94 V‐2 rating test, while 15APP/5PT‐Cluster/PP demonstrated no flame‐retardant rating in UL 94 vertical burning tests. In a cone calorimeter test, @IFR also had a better inhibition effect on heat release. The average heat release rate (av‐HRR) value during 0 to 120 seconds of @IFR/PP was only 41 kW m?2, which was 33.9% lower than that of the 15APP/5PT‐Cluster/PP. Furthermore, the peak heat release rate (pk‐HRR) of @IFR/PP was 20.5% lower than that of 15APP/5PT‐Cluster/PP, and the time to pk‐HRR of @IFR/PP was 710 seconds, while that of 15APP/5PT‐Cluster/PP was 580 seconds. The better inhibition effect on HRR and the delay of time to pk‐HRR were caused by the joint‐aggregated structure of @IFR, which can rapidly react to form stable and efficient char layers. This kind of join‐aggregation IFR effect has great significance in suppressing the spread of fire in reality. In addition, @IFR also increased the mechanical properties of PP composites slightly compared with the APP/PT‐Cluster mixture.  相似文献   

9.
A phosphorus‐containing polyester, poly (ethylene diglycol phenylphosphinate) (PEDPP) was synthesized from phenylphosphonic dichloride and ethylene diglycol. The structure of PEDPP has been determined by Fourier transform infrared (FTIR) spectroscopy, 1H nuclear magnetic resonance and matrix assisted laser desorption ionization‐time of flight‐mass spectrometer. A series of polylactide (PLA) blends with various content of PEDPP as flame retardant was prepared by direct melt compounding; the PLA/PEDPP blend is partially miscible. PEDPP is an effective flame retardant for PLA. The limiting oxygen index values increased from 19.7% for pure PLA to 29.0% for the blend containing 10wt% PEDPP. Thermogravimetric analysis‐FTIR analysis indicated that the PEDPP affected the pyrolytic decomposition process of PLA, which is established by the change of the pyrolytic decomposition rate and the gross mass of gaseous fuel formation. The pyrolytic decomposition activation energies of PLA and PLA/10%PEDPP were estimated via Flynn–Wall–Ozawa method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
The flame‐retardant polylactic acid (PLA) has been prepared via mixing the flame retardant TGIC‐DOPO derived from phosphaphenanthrene and triazine groups into matrix. The flame retardancy of TGIC‐DOPO/PLA composites was characterized using the limiting oxygen index (LOI), vertical burning test (UL94), and cone calorimeter test. Results reveal that the 10%TGIC‐DOPO/PLA composite obtained 26.1% of LOI and passed UL94 V‐0 rating. The flame‐retardant mechanism of PLA composites was characterized via thermogravimetric analysis (TGA), pyrolysis gas chromatography/mass spectroscopy, and TGA‐Fourier transform infrared. It discloses that TGIC‐DOPO promoted PLA decomposing and dripping early, and it also released the fragments with quenching and dilution effects. These actions of TGIC‐DOPO contribute to reducing the burning intensity and extinguishing the fire on droplets, thus imposing better flame retardancy to PLA. When TGIC‐DOPO was partly replaced by melamine cyanuric with dilution effect and hexa‐phenoxy‐cyclotriphosphazene with quenching effect in composites respectively, the results confirm that TGIC‐DOPO utilize well‐combination in dilution effect and quenching effect to flame retard PLA. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Flame‐retardant polyamide 6 (PA6) was prepared by an inorganic‐organic composite (MCN or MgO/g‐C3N4) synthesized by incorporating magnesium oxide (MgO) combined with graphitic carbon nitride (g‐C3N4). As compared to g‐C3N4, MCN possessed a laminate structure, more holes, and a larger specific surface area. The addition of MCN could effectively improve the flame retardancy and mechanical properties of PA6 due to its better compatibility and dispersion in the PA6 matrix. When the addition of MCN was 20 wt%, the vertical combustion performance of the PA6/MCN sample reached flammability rating V‐0 (UL‐94) and the limiting oxygen index (LOI) was up to 32.1%. The results of thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) revealed that the introduction of MCN efficiently enhanced thermal stability of PA6. The morphologies of the char residue observed by scanning electron microscopy (SEM) verified that MCN promoted the formation of sufficient, compact, and homogeneous char layers on the composite's surface during burning. Thus led to increase the char layer strength and improve the flame retardancy of PA6. The thermogravimetric analysis/infrared (TG‐IR) revealed the gas‐phase retardancy mechanism of MCN. Compared with PA6/g‐C3N4, PA6/MCN showed better mechanical properties in terms of flexural strength and tensile strength.  相似文献   

12.
Variable amounts of transition metal oxides (MO), such as MnO2, ZnO, Ni2O3, etc., were incorporated into blends of polypropylene (PP)/ammonium polyphosphate (APP)/dipentaerythritol (DPER) with the aim of studying and comparing their effects with main‐group MO on intumescent flame retardance (IFR). The PP/IFR/MO composites were prepared using a twin‐screw extruder, and the IFR behavior was evaluated through oxygen index and vertical burning tests. The progressive enhancement of flame retardancy has proved to be strongly associated with the interaction between APP and MO. With the aid of thermogravimetry (TG) analysis, Fourier transform infrared (FTIR) spectra and scanning electron microscopy, Ni2O3 has been shown to be the most effective among the aforementioned three MO. The flame‐retardant mechanism of the IFR system is also discussed in terms of catalytic charring, which relates to complex formation through the d‐orbitals of the transition metal elements. It is considered that the melt viscosity of a PP/APP/DPER blend containing Ni2O3 corresponds well to the gas release with increasing temperature. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Amino‐functionalized nanosilica (SiO2‐NH2) was prepared through cocondensation method using aminopropyltriethoxysilane as comonomer to hydrolyze and cocondense with tetraethylorthosilicate. The synergistic effect of combination of ammonium polyphosphate and pentaerythritol with SiO2‐NH2 on the thermal and flame‐retardant properties of intumescent flame‐retardant (IFR) polypropylene (PP) has been investigated by thermogravimetric analysis (TGA), scanning electron microscopy, Raman spectra, X‐ray diffraction (XRD), limiting oxygen index (LOI), and UL 94 tests. When 1.0 wt.% SiO2‐NH2 was added, the LOI value of the PP/IFR composite with 25 wt.% of IFR increased from 26.6% to 31.7%, while the UL 94 rating raised from not classified to V‐0. The TGA data demonstrated that the SiO2‐NH2 nanoparticles increased the charred residue of the PP/IFR composites. The morphological structures and the orderliness of the charred residue proved that SiO2‐NH2 promoted the formation of compact intumescent charred layer, which effectively protected the underlying polymer from burning. The XRD patterns of the charred residue indicated that nanosilica reacted with APP to form SiP2O7 crystal structure during combustion, which was beneficial to the formation of compact charred layers. In comparison with the inorganic SiO2‐cal nanoparticles, the amino‐functionalized nanosilica revealed much more efficient synergistic flame‐retardant effect due to the difference of surface properties.  相似文献   

14.
Based on bio‐based furfural, a phosphorus‐containing curing agent (FPD) was successfully synthesized, via the addition reaction between 9,10‐dihydro‐9‐oxa‐10 phosphaphenanthrene‐10‐oxide (DOPO) and furfural‐derived Schiff base. Then, as co‐curing agent, FPD was used to prepare flame retardant epoxy thermosets (EP) cured by 4, 4′‐diaminodiphenyl methane. The incorporated FPD improved the flame retardancy and toughness of epoxy thermoset, simultaneously. When 5 wt% FPD was added into EP, the FPD/EP achieved 35.7% limited oxygen index (LOI) value and passed UL94 V‐0 rating, meanwhile. In FPD/EP thermoset, the incorporated FPD reduced the thermal decomposition rate, increased the charring capacity, and inhibited the combustion intensity of epoxy thermoset. Through gas‐phase and condensed‐phase actions in weakening fuel supply, suppressing volatile combustion, and enhancing charring barrier effect, FPD decreased the heat release of burning epoxy thermoset, significantly. For the outstanding effectiveness on both flame retardancy and toughness, the study on FPD provides a promising way to manufacture high‐performance epoxy thermoset.  相似文献   

15.
Ramie fiber (RF) with excellent tensile strength was treated by a flame retardant and obtained the modified RF (MRF) that is incombustible. Then, MRF was used to improve the performance of rigid polyurethane foams (RPUF). The mechanical properties of the composite were investigated by compressive strength test and shear stress test. The fire characteristics were studied using a cone calorimeter. And the thermal decomposition and flammable properties were further evaluated using thermogravimetric analysis and limiting oxygen index. The results showed that MRF improve the mechanical properties of RPUF and eliminate the harm of flammability of RF on the RPUF.  相似文献   

16.
Herein, a bridged 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) derivative (PN‐DOPO) in combination with organ‐montmorillonite (OMMT) was used to improve the flame retardancy and mechanical properties of glass‐fiber‐reinforced polyamide 6 T (GFPA6T). The flame retardancy and thermal stabilities of the cured GFPA6T composites were investigated using limiting oxygen index, vertical burning (UL‐94) test, cone calorimeter test, and thermogravimetric analysis (TGA). The morphological analysis and chemical composition of the char residues after cone calorimeter tests were characterized via scanning electron microscopy and energy dispersive spectrometry. The results indicate that 2 wt% OMMT combined with 13 wt% PN‐DOPO in GFPA6T achieved a V‐0 rating in UL‐94 test. The peak heat release rate and total smoke release remarkably decreased with the incorporation of OMMT as compared to those of GFPA6T/15 wt% PN‐DOPO. The TGA results show that the thermal stability and residual mass of the samples effectively increased with the increase in OMMT content. The morphological analysis and composition structure of the residues demonstrate that a small amount of OMMT could help form a more thermally stable and compact char layer during combustion. Also, with the incorporation of OMMT, the layers consisted of more carbon‐silicon and aluminum phosphate char in the condensed phase. Furthermore, GFPA6T/PN‐DOPO/OMMT composites exhibited excellent mechanical properties in terms of flexural modulus, flexural strength, and impact strength than the GFPA6T/PN‐DOPO system. The combination of PN‐DOPO and OMMT has improved the flame retardancy and smoke suppression of GFPA6T without compromising the mechanical properties.  相似文献   

17.
18.
Phosphorus‐containing novolac–epoxy systems were prepared from novolac resins and isobutyl bis(glycidylpropylether) phosphine oxide (IHPOGly) as crosslinking agent. Their curing behavior was studied and the thermal, thermomechanical, and flame‐retardant properties of the cured materials were measured. The Tg and decomposition temperatures of the resulting thermosets are moderate and decrease when the phosphorous content increases. Whereas the phosphorous species decrease the thermal stability, at higher temperatures the degradation rates are lower than the degradation rate of the phosphorous‐free resin. V‐O materials were obtained when the resins were tested for ignition resistance with the UL‐94 test. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3516–3526, 2004  相似文献   

19.
The photoinitiated crosslinking of halogen‐free flame retarded linear low density polyethylene/poly(ethylene‐co‐vinyl acetate) blends (LLDPE/EVA) with the intumescent flame retardant (IFR) of phosphorous‐nitrogen compound (NP) in the presence of photoinitiator and crosslinker and their characterization of related properties have been investigated by gel determination, heat extension test, cone calorimeter test (CCT), thermogravimetric analysis (TGA), Fourier transfer infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), mechanical properties measurements, limiting oxygen index (LOI), UL‐94, and water resistance test. The data from the gel content and heat extension rate (HER) show that the LLDPE/EVA/IFR blends filled with NP are readily crosslinked to a gel content of above 75% and the HER values reach about 50% by UV‐irradiation of 5 sec under suitable amount of photoinitiator and crosslinker. The data obtained from the CCT and LOI indicate that photocrosslinking can considerably decrease the heat release rates (HRR) by 10–15%, prolongate the combustion time, and increase two LOI values for the LLDPE/EVA/NP blends UV irradiated for 5 sec. The results from TGA and the dynamic FTIR spectra give the evidence that the photocrosslinked LLDPE/EVA/NP samples show slower thermal degradation rate and higher thermo‐oxidative degradation temperature than the uncrosslinked LLDPE/EVA/NP samples. The morphological structures of charred residues observed by SEM give the positive evidence that the compact charred layers formed from the photocrosslinked LLDPE/EVA/NP samples play an important role in the enhancement of flame retardant and thermal properties. The data from the mechanical tests and water‐resistant measurements show that photocrosslinking can considerably improve the mechanical and water‐resistant properties of LLDPE/EVA/NP samples. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
《先进技术聚合物》2018,29(1):541-550
In order to improve the flame retardancy of polystyrene (PS), a phosphorus and nitrogen comonomer, named AC2NP2, was synthesized and then incorporated into various amounts of PS by seeded emulsion polymerization. The modified methacrylate (AC2NP2) was used as the core phase, the styrene as the shell phase, then flame‐retardant effect copolymers with core‐shell structure were prepared successfully. The particle size was ranged from 40 to 60 nm, and the structure and properties of the copolymers were characterized in detail. Notably, despite a few amounts of the AC2NP2 units in the copolymers, all the copolymers exhibited significantly enhanced thermal stability and reduced flammability as compared with pure PS. Furthermore, from differential scanning calorimetry test, it was observed that the glass transition temperature was tinily influenced with the incorporation of commoner. The incorporation of P‐N comonomer into PS backbone did not lead to negative effect on the glass transition behavior of PS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号