首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Extremophiles are the group of organisms that are far overlooked for exploring novel biomaterials in the field of material science and bionanotechnology. Extremophilic bacterial‐sulfated exopolysaccharide, mauran (MR), is employed for the bioreduction and passivation of gold nanoparticles (AuNps) to enhance the biocompatibility of AuNps and used for photothermal ablation of cancer cells. Here, various concentrations of MR solution are tested for the reduction of HAuCl4 solution in the presence as well as in the absence of an external reducing agent, to produce mauran‐gold nanoparticles (MRAu Nps). These biocompatible nanocomposites are treated with cancer cell lines under in vitro conditions and NIR irradiated for complete ablation. MRAu Nps‐treated cancer cells on immediate exposure to infrared radiation from a femtosecond pulse laser of operating wavelength 800 nm are subjected to hyperthermia causing cell death. Biocompatible MR stabilization could fairly reduce the cytotoxicity caused by bare AuNps during biomedical applications. Application of a biocompatible polysaccharide from extremophilic bacterial origin for reduction and passivation of AuNps and used for a biomedical purpose is known to be first of its kind in bionanofusion studies.  相似文献   

2.
金纳米颗粒在可见光区具有高消光效率引起科研人员关注。金纳米流体被用作太阳能体吸收工质。通过太阳能加热亲水表面金纳米流体液滴蒸发实验,详细研究了液滴蒸发过程特性。液滴蒸发过程中液滴几何参数和表面温度被仪器实时记录。液滴蒸发主要为常接触面积模式,接触角逐渐减小。液滴体积随时间线性变化,与传统理论蒸汽扩散模型结果不同。本文研究能帮助指导太阳能光热利用以及液滴蒸发在工业中的应用。  相似文献   

3.
Complex-shaped nanoparticles as gold nanourchins (GNU) and nanorods (GNR) are very suitable agents in the case of photothermal therapy due to their photon-heat conversion ability in the red and near-infrared region (NIR). The quantification in heat generation of complex shaped nanostructures is an important key to predict the therapeutic effect of these nanoparticles. For that, the determination of the nanoparticles absorption cross section (σAbs) responsible for the heat generation is one of the important steps before any application. Although it is obvious to determine σAbs for spheres via Mie's theory, in the case of complex structures like GNU or GNR, this parameter is difficult to model. In this work, a new methodology is used to determine experimentally σAbs for both GNU and GNR. Experimental measurements of the photothermal properties of 100 nm size GNU and two different sizes of GNRs are studied regarding different parameters such as concentration, laser excitation wavelength, and exposure time. By using the heat transfer theory, the temperature elevation in the nanoparticles solutions is converted to temperature elevation at the nanoparticles surface and σAbs values are then calculated for both GNU and GNR in the NIR spectral region.  相似文献   

4.
Recent progresses in plasmon‐induced hot electrons open up the possibility to achieve photon harvesting beyond the fundamental limit imposed by band‐to‐band transitions in semiconductors. To obtain high efficiency, both the optical absorption and electron emission/collection are crucial factors that need to be addressed in the design of hot electron devices. Here, we demonstrate a photoresponse as high as 3.3mA/W at 1500nm on a silicon platform by plasmonic absorber (PA) and omni‐Schottky junction integrated photodetector, reverse biased at 5V and illuminated with 10mW. The PA fabricated on silicon consists of a monolayer of random Au nanoparticles (NPs), a wide‐band gap semiconductor (TiO2) and an optically thick Au electrode, resulting in broadband near‐infrared (NIR) absorption and efficient hot‐electron transfer via an all‐around Schottky emission path. Meanwhile, time and spectral‐resolved photoresponse measurements reveal that embedded NPs with superior absorption resembling plasmonic local heating sources can transfer their energy to electricity via the photothermal mechanism, which until now has not been adequately assessed or rigorously differentiated from the photoelectric process in plasmon‐mediated photon harvesting nano‐systems.  相似文献   

5.
The use of nanoparticle (NP) systems to control cellular physiology, including membrane potential, can facilitate furthered understanding of many disparate cellular processes ranging from cellular proliferation to tissue regeneration. A gold NP (AuNP) bioconjugate system based on the honeybee venom peptide, tertiapin‐Q (AuNP‐TPN‐Q), that depolarizes membrane potential by targeting inward rectifier potassium channels (Kir), is developed. The conjugate elicits, in a peptide concentration–dependent manner, a greater and more rapid depolarization response compared to the free peptide alone. The specificity of the interaction of the AuNP‐TPN‐Q conjugate with the Kir channel using immunocytochemistry and competition binding assays is confirmed. It is further shown that membrane depolarization is photothermally reversible via the laser‐induced plasmonic heating of the AuNP, providing a level of control over Kir channels not afforded by currently available drugs. The functional nanobioconjugate described herein provides a new research tool for understanding the intricacies of ion channel activity and the modulation of cellular membrane potential.  相似文献   

6.
7.
系统阐述了与金纳米粒子(GNPs) 放射增敏效应相关实验的方法与结果、影响GNPs 放射增敏的因素、GNPs 放射增敏的细胞和动物实验表现及其相关机制。同时结合相关实验,分析和比较了15 nm 柠檬酸钠包被的GNPs 的放射增敏效应,发现GNPs 在高LET 的碳离子束和低LET 的X射线辐照下对Hela细胞的杀伤力随其浓度的增加而增大;在50% 的细胞存活率下,当GNPs 的质量浓度为7.5 g/mL时,其X射线的剂量减少率和碳离子的相对生物学效应值(RBE) 的增加率达到了最大,分别为65.3% 和43.6%,同时GNPs 共培养细胞24 和48 h 后,未出现细胞周期同步化的现象。This paper describes the methods and results of the previous experiments, the experimental phenomena of the cell and animal tests and the relative mechanisms on the radiosensitizing effect of GNPs. Together with our experiments, the radiosensitizing effects of 15 nm citrate-capped GNPs and related mechanisms are analyzed and compared, finding that Hela cell killing of GNPs increase along with their concentration after exposure to high- and low-LET radiation such as carbon ions and X-rays. In addition, the percentages of dose reduction of the X-rays and RBE increment of the carbon ions reached their maximums 65.3% and 43.6%, respectively,at 50% survival level when Hela cells were pre-treated with 7.5 g/mL GNPs. Moreover, Hela cells showed no cell-cycle synchronization after 24 and 48 h exposure to GNPs.  相似文献   

8.
Gold (Au) nanomaterials are promising photothermal agents for the selective treatment of tumor cells owing to the strong capability to convert near‐infrared (NIR) irradiation into heat energy. One basic issue for practical photothermal therapy is the enhancement of photothermal effect in NIR region. Here, various low‐molecular‐weight thiols are applied to induce one‐dimensional (1D) self‐assembly of Au nanorods (NRs), which leads to the redshift of absorption peak towards NIR region. As a result, the 1D assembled Au NRs exhibit improved photothermal effect at 808 nm in comparison to unassembled Au NRs.  相似文献   

9.
The unique properties of plasmonic nanostructures have fuelled research based on the tremendous amount of potential applications. Their tailor‐made assemblies in combination with the tunable size and morphology of the initial building blocks allow for the creation of materials with a desired optical response. In this respect, it is crucial to synthesize nanoparticles with a defined shape that are at the core of such developments. Moreover, the interaction of individual nanoparticles with an incident electromagnetic field cannot only be influenced by their structure, but in fact, also by their spatial arrangement to each other. To harvest such opportunities, a profound theoretical understanding of these interactions is required as well as concise strategies to create such ordered assemblies. A quantitative evaluation of their optical properties can only be conducted when discrete structures of high uniformity can be achieved. As a consequence, separation steps have to be applied in order to obtain materials of high purity and uniformity. This also allows for an easier structural characterization of the nanoparticles and their assembled superstructures. In this progress report, an overview about the current development in this field of research is provided.  相似文献   

10.
In this study, manganese tellurite (MnTeO3) nanoparticles are developed as theranostic agents for magnetic resonance imaging (MRI)-guided photothermal therapy of tumor. MnTeO3 nanoparticles are synthesized via a simple one-step method. The as-synthesized MnTeO3 nanoparticles with uniform size show good biocompatibility. In particular, MnTeO3 nanoparticles exhibit a high photothermal conversion efficiency (η = 26.3%), which is higher than that of gold nanorods. Moreover, MnTeO3 nanoparticles also have high MRI performance. The longitudinal relaxivity (r1) value of MnTeO3 nanoparticles is determined to be 8.08 ± 0.2 mm −1 s−1, which is higher than that of clinically approved T1-contrast agents Gd-DTPA (4.49 ± 0.1 mm −1 s−1). The subsequent MnTeO3 nanoparticles-mediated photothermal therapy displays a highly efficient ablation of tumor cells both in vitro and in vivo with negligible toxicity. It is demonstrated that MnTeO3 nanoparticles can serve as promising theranostic agents with great potentials for MRI-guided photothermal therapy.  相似文献   

11.
Due to their localized surface plasmon resonances in visible spectrum, noble metal nanostructures have been considered for improving the photoactivity of wide bandgap semiconductors. Improved photoactivity is attributed to localized surface plasmon relaxations such as direct electron injection and resonant energy transfer. However, the details on the plasmonic solar water splitting through near electromagnetic field enhancement have not been fully understood. Here, the authors report that shape‐controlled gold nanoparticles on wide bandgap semiconductors improve the water‐splitting photoactivity of the semiconductors with over‐bandgap photon energies compared to sub‐bandgap photon energies. It is revealed that hot hole injection into the oxygen evolution reaction potential is the rate‐limiting step in plasmonic solar water splitting. The proposed concept of photooxidation catalysts derived from an ensemble of gold nanoparticles having sharp vertices is applicable to various photocatalytic semiconductors and provides a theoretical framework to explore new efficient plasmonic photoelectrodes.  相似文献   

12.
A combinatorial treatment comprising thermal therapy and chemotherapy offers synergistic effects by inducing localized heat to targeted tumor sites and simultaneously delivering anticancer drugs to minimize systemic side effects and enhance the cytotoxic effect. In this study, a novel platform is developed for combining photothermal therapy and chemotherapy using drug‐conjugated gold nanorods (GNRs). Camptothecin (CPT), a model anticancer drug, is chemically conjugated onto GNRs through hydrolytic ester bonding. Upon near‐infrared (NIR) irradiation, localized heat from GNRs in target areas starts to destroy tissues and cells via photothermal therapy, and the elevated temperature accelerates hydrolysis of ester linkage, rapidly releasing drugs for chemotherapy. This combined NIR triggered thermal therapy and chemotherapy with CPT‐functionalized GNRs (CPT‐GNRs) presents a synergistic effect that has high efficacy in in vitro tests, thus providing a robust platform for efficient cancer treatments.  相似文献   

13.
By embedding metal nanoparticles within polymeric materials, selective thermal polymer processing can be accomplished via irradiation with light resonant with the nanoparticle surface plasmon resonance due to the photothermal effect of the nanoparticles which efficiently transforms light into heat. The wavelength and polarization sensitivity of photothermal heating from embedded gold nanorods is used to selectively process a collection of polymeric nanofibers, completely melting those fibers lying along a chosen direction while leaving the remaining material largely unheated and unaffected. Fluorescence‐based temperature and viscosity sensing was employed to confirm the presence of heating and melting in selected fibers and its absence in counter‐aligned fibers. Such tunable specificity in processing a subset of a sample, while the remainder is unchanged, cannot easily be achieved through conventional heating techniques.  相似文献   

14.
The use of metal nanoparticles has shown to be very important in recent industrial applications. Currently gold nanoparticles are being produced by physical methods such as evaporation. Biological processes may be an alternative to physical methods for the production of gold nanoparticles. Alfalfa biomass has shown to be effective at passively binding and reducing gold from solutions containing gold(III) ions and resulting in the formation of gold(0) nanoparticles. High resolution microscopy has shown that five different types of gold particles are present after reaction with gold(III) ions with alfalfa biomass. These particles include: fcc tetrahedral, hexagonal platelet, icosahedral multiple twinned, decahedral multiple twinned, and irregular shaped particles. Further analysis on the frequency of distribution has shown that icosahedral and irregular particles are more frequently formed. In addition, the larger particles observed may be formed through the coalescence of smaller particles. Through modification of the chemical parameters, more uniform particle size distribution may be obtained by the alfalfa bio-reduction of gold(III) from solution.  相似文献   

15.
Nanocarriers prepared from poly(lactide‐co‐glycolide) (PLGA) have broad biomedical applications. Understanding their cellular uptake and distribution requires appropriate visualization in complex biological compartments with high spatial resolution, which cannot be offered by traditional imaging techniques based on fluorescent or radioactive probes. Herein, the encapsulation of gold nanoparticles (GNPs) into PLGA nanoparticles is proposed, which should allow precise spatial visualization in cells using electron microscopy. Available protocols for encapsulating GNPs into polymeric matrices are limited and associated with colloidal instability and low encapsulation efficiency. In this report, the following are described: 1) a facile protocol to functionalize GNPs with PLGA polymer followed by 2) encapsulation of the prepared PLGA‐capped GNPs into PLGA nanocarriers with 100% encapsulation efficiency. The remarkable encapsulation of PLGA‐GNPs into PLGA matrix obeys the general rule in chemistry “like dissolves like” as evident from poor encapsulation of GNPs capped with other polymers. Moreover, it is shown that how the encapsulated gold nanoparticles serve as nanoprobes to visualize PLGA polymeric hosts inside cancer cells at the spatial resolution of the electron microscope. The described methods should be applicable to a wide range of inorganic nanoprobes and provide a new method of labeling pharmaceutical polymeric nanocarriers to understand their biological fate at high spatial resolution.  相似文献   

16.
Diffusion dynamics of gold nanoparticles (GNPs) was studied by fluorescence correlation spectroscopy (FCS). The fluorescence was studied by exciting the particles by green laser (532 nm), which is far from longitudinal plasmon band of nanorods. Transmission electron microscope (TEM) and UV-Vis-NIR spectrometer were used to characterize the gold nanoparticles. Despite their low quantum yields, GNPs possess the native fluorescence. The excellent antiphotobleaching behavior of gold nanorods leads to prospects of using FCS for its detailed studies. Using FCS, dynamic information can be extracted from the fluorescence fluctuations in the system by autocorrelation function. Maximum entropy method (MEMFCS) was used to identify the number of distinct components present in the system. The particle sizes obtained from FCS were found to be higher (by few orders of magnitude) compared to TEM analysis. This might be due to the possible contributions from cetyltrimethyl ammonium bromide (CTAB) capping in the system.  相似文献   

17.
金复合纳米微粒的消光特性   总被引:1,自引:3,他引:1  
颜丙海  杨杨  王永昌 《光子学报》2003,32(6):698-701
基于Mie光散射理论,研究了金壳介质芯的金复合纳米球壳微粒在光散射与吸收中的消光特性.对微粒增大时的多极子特性以及内半径变动时共振峰的移动作了计算和分析,证实了共振峰位置随内外半径比增大而增大的规律.还对纯金纳米微粒的多极子特性作了计算,并讨论了总消光效率中散射和吸收各自的贡献.  相似文献   

18.
Herein, an inkjet-based technology as a versatile high throughput methodology for the microencapsulation of gold nanoparticles (AuNPs) inside a biocompatible chitosan hydrogel is described. This continuous automated inkjet production approach generates 30 µm diameter polymeric microcapsules and offers a high rate of production and nanoparticle encapsulation efficiency of 14 nm diameter AuNPs, precise control of the microcapsule size, and ease of scale-up. The hybrid microcapsules demonstrate biocompatible cell-adhesion properties and resist degradation over a large range of pH, making them particularly relevant for a variety of potential health applications.  相似文献   

19.
The design of effective cancer vaccines must be able to activate dendritic cells (DCs) of the innate immune system in order to induce immunity to pathogens and cancer. DCs patrol the body and once they encounter antigens, they orchestrate a complex mechanism of events and signals that can alert the adaptive immune system to action. However, DC‐based vaccines remain a challenge in part because the source and quality of antigens, the DC targeting molecule, type of adjuvant, and delivery vehicle must be optimized to induce a robust immune response. Gold nanoparticles (AuNPs) have now entered clinical trials as carriers due to their ease of functionalization with antigens, adjuvants, and targeting molecules. This progress report discusses how AuNPs can influence DC activation and maturation, as well as their potential impact on T helper (Th) differentiation. Ultimately, successful AuNP‐based DC vaccines are able to induce phagocytosis, activation/maturation, migration, T cell costimulation, and cytokine secretion, which is named AuNP‐induced DC tuning (AuNP‐DC tuning). Although at its infancy, understanding the processes of AuNP‐DC tuning will give a better understanding of how best to engineer AuNPs and will redefine the next generation of DC‐based vaccines.  相似文献   

20.
A telechelic thermoresponsive polymer, α‐amino‐ω‐thiol‐poly(N‐isopropylacrylamide) (H2N‐PNiPAM‐SH), is used as the polymeric glue to assemble gold nanoparticles (AuNPs) around gold nanorods (AuNRs) into a satellite structure. Prepared by reversible addition‐fragmentation chain transfer polymerization followed by hydrazinolysis, H2N‐PNiPAM‐SH is able to interlink the two types of the gold building blocks with the thiol‐end grafting on AuNRs and the amine‐end coordinating on the AuNP surface. The density of the grafted AuNPs on AuNRs can be tuned by adjusting the molar ratio between AuNPs and AuNRs in the feed. The resulted satellite‐like assembly exhibits unique optical property that was responsive to temperature change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号