首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This report describes the development of a facile method for the synthesis of cross‐linked proteins with gold nanoclusters (CP‐GNC). The synthesis reaction is completed within 15 min at 97 °C. The synthesized CP‐GNC are characterized by using UV–vis absorption, fluorescence, X‐ray photoelectron spectroscopy, and transmission electron microscopy. CP‐GNC are approximately 100 nm in diameter and 700 nm in length, whereas AuNCs within the nanorods are approximately 6 nm in size. These materials are highly fluorescent with quantum yield of 7.2% and can be absorbed onto and release from bacterial cells in a pH‐dependent and reversible manner. The recent data show that CP‐GNC can be a useful, new tool with potential applications in fluorescent cell imaging and antibiotic targeting.  相似文献   

2.
Biocompatible, near‐infrared luminescent gold nanoclusters (AuNCs) are synthesized directly in water using poly(ethylene glycol)‐dithiolane ligands terminating in either a carboxyl, amine, azide, or methoxy group. The ≈1.5 nm diameter AuNCs fluoresce at ≈820 nm with quantum yields that range from 4–8%, depending on the terminal functional group present, and display average luminescence lifetimes approaching 1.5 μs. The two‐photon absorption (TPA) cross‐section and two‐photon excited fluorescence (TPEF) properties are also measured. Long‐term testing shows the poly(ethylene glycol) stabilized AuNCs maintain colloidal stability in a variety of media ranging from saline to tissue culture growth medium along with tolerating storage of up to 2 years. DNA and dye‐conjugation reactions confirm that the carboxyl, amine, and azide groups can be utilized on the AuNCs for carbodiimide, succinimidyl ester, and CuI‐assisted cycloaddition chemistry, respectively. High signal‐to‐noise one‐ and two‐photon cellular imaging is demonstrated. The AuNCs exhibit outstanding photophysical stability during continuous‐extended imaging. Concomitant cellular viability testing shows that the AuNCs also elicit minimal cytotoxicity. Further biological applications for these luminescent nanoclustered materials are discussed.  相似文献   

3.
Noble metal nanoclusters (NCs) have emerged as intriguing nanomaterials with widespread interest. Previously, it was shown that dithiothreitol (DTT)‐conjugated gold nanoclusters (Au NCs) respond to copper ions in aqueous solution. Here, it is shown that these DTT–Au NCs can interact with DNA by forming raspberry‐like particles. The raspberry‐like structures protect the capped DNA from enzymatic attack and show excellent biocompatibility. Moreover, these supramolecular complexes cross the plasma membrane of yeast cells and express green fluorescent protein encoded by the DNA, suggesting that DTT–Au NCs can serve as an efficient carrier for gene delivery.  相似文献   

4.
Assemblies of biopolymers and nanomaterials have become a powerful tool to build up new architectures with growing application potential. Herein, novel peptide‐stabilized fluorescent gold nanoclusters, K4‐AuNCs, are utilized as building blocks to investigate their coassembly with nucleic acids. K4‐AuNCs possess ultrasmall size (1.8 nm), red fluorescence emission, and positively charged surfaces, which are able to coassemble with DNA or RNA strands through electrostatic interactions to form pitaya‐like hybrid nanoparticles ranging from 30 to 80 nm, accompanied by an up to 3.5‐fold fluorescence enhancement. The coassembly also forms intracellularly, rendering K4‐AuNCs an attractive dye for specific in vivo nucleic acid staining, due to their higher photostability than commercial fluorescent probes such as SYTO 9. This work also demonstrates that the coassembly of K4‐AuNCs with nucleic acids can be applied to gene transfection and to build up a sensing platform to detect DNase/RNase activity or to screen their inhibitors. The new strategy greatly extends the application range of gold nanoclusters into the development of new nucleic acid detection methods and novel hybrid materials.  相似文献   

5.
Aminooxy (–ONH2) groups are well known for their chemoselective reactions with carbonyl compounds, specifically aldehydes and ketones. The versatility of aminooxy chemistry has proven to be an attractive feature that continues to stimulate new applications. This work describes application of aminooxy click chemistry on the surface of gold nanoparticles. A trifunctional amine‐containing aminooxy alkane thiol ligand for use in the functionalization of gold monolayer‐protected clusters (Au MPCs) is presented. Diethanolamine is readily transformed into an organic‐soluble aminooxy thiol ( AOT ) ligand using a short synthetic path. The synthesized AOT ligand is coated on ≤2‐nm‐diameter hexanethiolate‐(C6S)‐capped Au MPCs using a ligand‐exchange protocol to afford organic‐soluble AOT /C6S (1:1 ratio) Au mixed monolayer‐protected clusters (MMPCs). The synthesis of these Au(C6S)( AOT ) MMPCs and representative oximation reactions with various types of aldehyde‐containing molecules is described, highlighting the ease and versatility of the chemistry and how amine protonation can be used to switch solubility characteristics.  相似文献   

6.
In this article, a facile and rapid method was developed to synthesize intensely photoluminescent gold nanoclusters (AuNCs) based on photocatalytic reduction. Using (5-mercapto-1,3,4-thiadiazol-2-ylthio)acetic acid (TMT) that is a photosensitive material as the ligands, AuNC@TMT, with high photoluminescence quantum yield (19.7%), were prepared. The average diameter of gold core is 1.69 ± 0.22 nm. The maximum excitation and emission wavelengths of AuNC@TMT are at 422 and 516 nm, respectively. The mechanism of photocatalytic reduction is preliminarily understood. Under UV lamp with 365 nm irradiation, Au(Ι)-TMT complex occurred with electron transfer from TMT to Au(Ι), which was reduced to Au(0) as the gold core of AuNC. Thus, it indicates that the photosensitive and electron transport materials with a thiol group will be superior ligands for synthesis of intensely photoluminescent AuNCs.  相似文献   

7.
Surface‐enhanced Raman scattering (SERS) is an extremely powerful tool for the analysis of the composition of bimetallic nanoparticle (BNP) surfaces because of the different adsorption schemes adopted by several molecules on different metals, such as Au and Ag. The preparation of BNPs normally implies a change in the plasmonic properties of the core metal. However, for technological applications it could be interesting to synthesize core–shell structures preserving these original plasmonic properties. In this work, we present a facile method for coating colloidal gold nanoparticles (NPs) in solution with a very thin shell of silver. The resulting bimetallic Au@Ag system maintains the optical properties of gold but shows the chemical surface affinity of silver. The effectiveness of the coating method, as well as the progressive silver enrichment of the outermost part of the Au NPs, has been monitored through the SERS spectra of several species (chloride, luteolin, thiophenol and lucigenin), which show different behaviors on gold and silver surfaces. A growth mechanism of the Ag shell is proposed on the basis of the spectroscopic and microscopic data consisting in the formation and deposit of Ag clusters on the Au NP surface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Thiolate‐protected gold nanoclusters with high chemical stability are exploited extensively for fundamental research and utility in chosen applications. Here for the first time, the controlled destabilization of extraordinarily stable thiolated gold clusters for the growth of single‐crystalline gold nanoparticles (AuNPs) is demonstrated, which was achieved simply via the oxidation of surface‐protecting thiolates into disulfides by hydrogen peroxide under basic condition. By combining with our experimental observations over the entire destabilization and growth process, the new growth mechanism from clusters to AuNPs is revealed by density functional theory (DFT) calculations. It is found that the size of AuNPs decreases with the increase of hydrogen peroxide concentration due to the generation of more nuclei at the higher hydrogen peroxide concentrations. In addition, the preparation of AuNPs is tuned by changing the concentration of hydrogen peroxide, and they are self‐assembled into microspheres via an evaporation‐mediated process, which can induce strong plasmonic coupling between adjacent AuNPs for ultrasensitive surface‐enhanced Raman scattering detection. The present work demonstrates a facile route to functionalize and engineer AuNPs via controlling the reaction conditions and the ratio of precursors, and thus bring new possibilities for using more clusters as precursors to construct novel nano/microstructures for various applications.  相似文献   

9.
The dispersion of silicon quantum dots (Si QDs) in water has not been established as well as that in organic solvents. It is now demonstrated that the excellent dispersion of Si QDs in water with photoluminescence (PL) quantum yields (QYs) comparable to those for hydrophobic Si QDs can be realized by combining the processes of hydrosilylation and self‐assembly. Hydrogen‐passivated Si QDs are initially hydrosilylated with 1‐dodecence. The toluene solution of the resulting dodecyl‐passivated Si QDs is mixed with the water solution of the amphiphilic polymer of Pluronic F127 to form an emulsion. Dodecyl‐passivated Si QDs are encapsulated in the micelles self‐assembled from F127 in the emulsion. The size of the Si‐QD‐containing micelles may be tuned in the range from 10 to 100 nm. Although self‐assembly in the emulsion causes the PL QY of Si QDs to decrease, after a few days of storage in ambient conditions, Si QDs encapsulated in the water‐dispersible micelles exhibit recovered PL QYs of ≈24% at the PL wavelength of ≈680 nm. The intensity of the PL from Si QDs encapsulated in the water‐dispersible micelles is >90% of the original value after 60 min ultraviolet illumination, indicating excellent photostability.  相似文献   

10.
In this work, uniform, quasi‐spherical gold nanoparticles (Au NPs) with sizes of 31–577 nm are prepared via one‐pot seeded growth with the aid of tris‐base (TB). Distinct from the seeded growth methods available in literature, the present method can be simply implemented by subsequently adding the aqueous dispersion of the 17 nm Au‐NP seeds and the aqueous solution of HAuCl4 into the boiling aqueous TB solution. It is found that at the optimal pH range, the sizes of the final Au NPs and their concentrations are simply controlled by either the particle number of the Au seed dispersion or the concentration of the HAuCl4 solution, while the latter enables us to produce large Au NPs at very high concentration. Moreover, as‐prepared Au NPs of various sizes are coated on glass substrates to test their surface‐enhanced Raman scattering (SERS) activities by using 4‐aminothiophenol (4‐ATP) molecules as probes, which exhibit “volcano type” dependence on the Au NP sizes at fixed excitation wavelength. Furthermore, the Au NPs with sizes of ≈97 and 408 nm exhibit the largest SERS enhancement at the excitation wavelength of 633 and 785 nm, respectively.  相似文献   

11.
聚腺嘌呤-金纳米簇(聚A-AuNCs)制备简单,快速,且具有优良的荧光性能和光学稳定性。基于聚A单链DNA为模板合成的金纳米簇,构建了一种灵敏、简单、快速的新传感方法用于检测汞离子。以柠檬酸钠为还原剂,通过水浴加热法合成金纳米簇。用荧光光谱仪和透射电镜对金纳米簇的荧光性能和微观形貌进行了表征。结果表明:合成的金纳米簇为球形,分散性良好,平均粒径约为7 nm。金纳米簇在280 nm紫外光激发下,于471 nm处发射出强烈的蓝色荧光,且金纳米簇的光学稳定性良好。溶液在4 ℃下避光保存1个月,金纳米簇的荧光强度变化很小。当汞离子存在时,汞离子与纳米金之间的高亲和力,可以有效地猝灭金纳米簇的荧光。文中讨论了反应体系中缓冲溶液pH值和反应时间对传感器性能的影响,发现缓冲溶液pH值对该方法的影响不大。汞离子对金纳米簇的荧光猝灭反应非常迅速,1 min之内就可以完成,所以后续反应仅需简单的混合即可进行荧光的测定。在最优化实验条件下,对一系列汞离子浓度进行了检测,线性方程为:y=-335.57x+541.35,检测线性范围在0.01~1 μmol·L-1之间,相关系数为0.992 6。根据空白的三倍标准偏差原则确定检测下限为3 nmol·L-1。该方法选择性好,通过9种金属离子的加入对金纳米簇的荧光信号并无明显影响,验证了金纳米簇对汞离子检测的特异性。用该方法检测了环境水样中的汞离子,加标回收率在95.33%~103.8%之间,相对标准偏差(RSD)不大于4%,可用于实际样品中Hg2+的检测。该法仅需将溶液简单混合即可实现对汞离子的检测,具有操作简便、快速、灵敏度高和选择性好等优点。  相似文献   

12.
A simple fabrication method is demonstrated for surface‐enhanced Raman scattering (SERS)‐active plasmonic nanoballs, which consisted of Au nanoparticles (NPs) and core–shell polystyrene and amino‐terminated poly(butadiene) particles, by heterocoagulation and Au NP diffusion. The amount of Au NPs introduced into the core–shell particles increases with the concentration of Au NPs added to the aqueous dispersion of the core–shell particles. When the amount of Au NPs increases, closely packed, three‐dimensionally arranged and close‐packed Au NPs arrays are formed in the shells. Strong SERS signals from para‐mercaptophenol adsorbed onto composite particles with multilayered Au NPs arrays are obtained by near‐infrared (NIR) light illumination.  相似文献   

13.
The metallophilic bond is a weak interaction between closed‐shell ions and has been widely used a probe for various sensing of toxic chemicals for environmental safety concerns. Here, the interaction between Au nanoclusters (NCs) and metallic ions (mercury (Hg2+) and copper (Cu2+) ions) is explored using steady‐state and time‐resolved luminescence and transient absorption measurements. For Hg2+ ions, the delayed fluorescence (DF) of bovine serum albumin (BSA) protected Au25 (Au25@BSA) NCs is quenched via an effective triplet state electron transfer through the metallophilic bond. However, the Cu2+ ions do not alter the DF in Au25@BSA NCs because of the absence of the metallophilic interaction. Furthermore, for Au8@BSA and Au10@histidine, in which there are no Au+ ions on the surface, the fluorescence is not quenched by Hg2+ ions. Such a novel triplet electron transfer process through metallophilic bonds are observed and reported for the first time. The reduction of the reverse intersystem crossing is the crucial for Hg2+ ion sensing in the fluorescent Au25@BSA NCs.  相似文献   

14.
A dual‐emission ratiometric fluorescent sensing film for metal ion detection is designed. This dual‐emission film is successfully prepared from chitosan, graphitic carbon nitride (g‐C3N4), and gold nanoclusters (Au NCs). Here, it is shown that the g‐C3N4 not only serves as the fluorescence emission source, but also enhances the mechanical and thermal stability of the film. Meanwhile, the Au NCs are adsorbed on the surface of chitosan film by the electrostatic interaction. The as‐prepared dual‐emission film can selectively detect Cu2+, leading to the quench of red fluorescence of Au NCs, whereas the blue fluorescence from g‐C3N4 persists. The ratio of the two fluorescence intensities depends on the Cu2+ concentration and the fluorescence color changes from orange red to yellow, cyan, and finally to blue with increasing Cu2+ concentration. Thus, the as‐prepared dual‐emission film can be worked as ratiometric sensing paper for Cu2+ detection. Furthermore, the film shows high sensitivity and selectivity, with low limit of detection (LOD) (10 ppb). It is observed that this novel gold‐cluster‐based dual‐emission ratiometric fluorescent sensing paper is an easy and convenient way for detecting metal ions. It is believed that this research work have created another avenue for the detection of metal ions in the environment.  相似文献   

15.
Shell‐isolated nanoparticles (NPs)‐enhanced Raman spectroscopy (SHINERS) can be potentially applied to virtually any substrate type and morphology. How to take a step forward to prepare SHINERS NPs (SHINs) with superior performance is critical for the practical applications of surface‐enhanced Raman scattering (SERS) in the breadth and depth. Here, we present a method to obtain 120 nm diameter gold NPs coated with ultrathin silica shells (1–4 nm). The silica shell can be controlled growth through carefully tuning a series of parameters, such as amount of 3‐aminopropyl triethoxysilane used, pH, reaction time, and reaction temperature. We compare the enhancement factor of the obtained 120 nm Au with a 4 nm silica shell NPs to the 55 nm Au with a 4 nm silica shell NPs, and the activity of a 120 nm SHINs is nearly 24 times that the 55 nm SHIN from a single particle view. We also compare the enhancement factor of 1 nm silica shell Au@SiO2 NPs with the bare Au NPs. The enhancement factor of 1 nm silica shell Au@SiO2 NPs was found to be about twice that of the bare particles. For a deeper understanding of the source of the giant enhanced electrical field of the 1 nm silica shell Au@SiO2 NPs, we study the plasmonic property of single 1 nm silica shell Au@SiO2 NP on a gold film substrate through correlation of the structure of single NP using SEM with its SPR spectroscopy. We find that the multipolar interaction between the single Au@SiO2 NP and gold film substrate is important for the SERS. Our studies on the performance of 120 nm SHINs and the plasmonic property of these particles can significantly expand the applications of SHINERS technique and improve the understanding of physical nature of SHINs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Reactive ion etching was used to fabricate black‐Si over the entire surface area of 4‐inch Si wafers. After 20 min of the plasma treatment, surface reflection well below 2% was achieved over the 300–1000 nm spectral range. The spikes of the black‐Si substrates were coated by gold, resulting in an island film for surface‐enhanced Raman scattering (SERS) sensing. A detection limit of 1 × 10?6 M (at count rate > 102 s?1 . mW?1) was achieved for rhodamine 6G in aqueous solution when drop cast onto a ~ 100‐nm‐thick Au coating. The sensitivity increases for thicker coatings. A mixed mobile‐on‐immobile platform for SERS sensing is introduced by using dog‐bone Au nanoparticles on the Au/black‐Si substrate. The SERS intensity shows a non‐linear dependence on the solid angle (numerical aperture of excitation/collection optics) for a thick gold coating that exhibits a 10 times higher enhancement. This shows promise for augmented sensitivity in SERS applications.  相似文献   

17.
Au nanoparticle (AuNP) core particles coated with a poly(N‐isopropylacrylamide) (pNIPAm) shell (Au@pNIPAm) are synthesized by seed mediated free radical polymerization. Subsequently, a temperature–light‐responsive photonic device is fabricated by sandwiching the Au@pNIPAm particles between two thin layers of Au. The optical device exhibits visual color and characteristic multipeak reflectance spectra, where peak position is primarily determined by the distance between two Au layers. Dual responsivities of the photonic device are achieved by combining the photothermal effect of AuNPs core (localized surface plasmon resonance (LSPR) effect) and the temperature responsivity of the pNIPAm shell. That is, the pNIPAm shell collapses as the temperature is increased above pNIPAm's lower critical solution temperature, either by direct heat input or heat generated by AuNPs' LSPR effect. To investigate the effect of AuNPs distribution in the microgels on the devices' photothermal responsivity, the Au@pNIPAm microgel‐based etalon devices are compared with that fabricated by AuNP‐doped pNIPAm‐based microgels; in terms of response kinetics and optical spectrum homogeneity. The uniform Au@pNIPAm microgel‐based devices show a fast response and exhibit a comparatively homogeneous spectrum over the whole slide. These materials can potentially find use in drug delivery systems, active optics, and soft robotics.  相似文献   

18.
Gold and silver nanomaterials (NMs) such as nanoparticles (NPs) and nanoclusters (NCs) possessing interesting optical properties have become popular sensing materials. With strong surface plasmon resonance (SPR) absorption, extraordinary stability, ease in preparation, conjugation, and biocompatibility, Au NPs are employed to develop sensitive and selective sensing systems for a variety of analytes. However, small sizes of Au and Ag NCs with interesting photoluminescence (PL) properties are used in many PL‐based sensing systems for the detection of important analytes. In addition, many bimetallic AuM NMs possessing strong catalytic activity are used to develop highly sensitive fluorescent sensors. This review article is categorized in four sections based on the NMs used in the sensing systems, including Au NPs, bimetallic AuM NMs, Au NCs, and DNA–Ag NCs. In each section, synthetic strategies and optical properties of the NMs are provided briefly, followed by emphasis on their analytical applications in the detection of small molecules, metal ions, DNA, proteins, and cells. Current challenges and future prospects of these NMs‐based sensing systems will be addressed.  相似文献   

19.
Deposition and fabrication of films of Au nanoclusters protected by alkanethiolate ligands are attempted on a TiO2(1 1 0) surface and the structures of films are observed by a scanning tunneling microscope (STM). Effects of oxygen and hydrogen-plasma etching in addition to UV irradiation on the structure and chemical composition of the films are also investigated by using STM and X-ray photoelectron spectroscopy. Alkanethiolate Au nanoclusters are produced using a modified Brust synthesis method and their LB films are dip-coated on TiO2(1 1 0). Alkanethiolate Au nanoclusters are weakly bound to the substrate and can be manipulated with an STM tip. Net-like structures of alkanethiolate Au nanoclusters are formed by a strong blast of air. Oxygen-plasma etching removes alkanethiolate ligands and simultaneously oxidizes Au clusters. At room temperature, prolonged oxygen-plasma etching causes agglomeration of Au nanoclusters. UV irradiation removes ligands partly, which makes Au nanoclusters less mobile. The net-like structure of alkanethiolate Au clusters produced by a blast of air is retained after oxygen and hydrogen-plasma etching.  相似文献   

20.
Surface heterogeneity of a metal nanoparticle is typically regarded as boundary defects and various crystalline facets. While organic capping ligands of a single type are assumed to be homogeneously distributed on the nanoparticle surface, heterogeneous surface coverage of citrate molecules on individual facets of gold nanoparticles (AuNPs) is revealed. Pt metallic clusters with 2 nm in diameter, epitaxially grown on the surface of AuNPs by chemical reaction and imaged by high‐resolution transmission electron microscopy, are utilized as negative‐imaging probes for densely packed adlayers where the underneath gold surface may not be accessible for Pt deposition. At pH > 5.0, citrate anions form only a loosely packed layer. At pH 4.5, citrates and citric acids form both loosely packed and densely packed layers that appear phase separated, and the densely packed domain as small as 5 nm × 5 nm is likely composed of fully protonated citric acids. IR spectra indicate that citric acid binds to a surface Au adatom through the oxygen atom of the central hydroxyl group, and similarly, citrate anions bind to Au adatoms through the carboxylate oxygen atom. This study also reveals the role of Au adatom in the adsorption of citrate species on the metallic surface of AuNPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号