首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ahmed E. M. Mekky 《合成通讯》2019,49(11):1385-1395
Novel bis(2-oxo-2H-chromene) as well as bis(2-imino-2H-chromene) derivatives incorporating piperazine moiety were prepared by the cyclocondensation reaction of bis(2-hydroxybenzaldehyde) with two equivalents of each of the appropriate β-ketoesters or acetonitrile derivatives. The bis(2-imino-2H-chromene-3-carbothioamide) derivative was used as a key synthon for construction of novel bis(3-(4-substituted thiazol-2-yl)-2H-chromen-2-one) derivatives via its cyclocondensation with a series of the appropriate α-halocarbonyl derivatives. Moreover, the bis(2-hydroxybenzaldehyde) reacted with four equivalents of the appropriate acetonitrile derivatives to afford the corresponding bis(3H-chromeno[3,4-c]pyridine) derivatives. Elucidation of the structure of the novel bis(chromenes) bearing piperazine nucleus was established by the spectral data and elemental analyses.  相似文献   

2.
Cyclodipepflde (3S, 6S )-bis (phenylmethyl) piperazlne-2,5-dione was prelmred in high yield by heating phenylalanine methyl ester in toluene under reflux. The reduction of this cydodipeptide with sodium NaBH4-BF3 in DIME gave the (2S ,SS)-bis(phenyl-methyl)plperazine, which, on heating with ethylene bromide and triethyiamine, afforded the title compounds. This methodwas proved to be generally applicable to the synthesis of C2-symmetric 2, 5-disubsiituted=l, 4-diazabicyclo [ 2.2.2 ] octanefrom the corresponding natural or unnatural amino acid esters.  相似文献   

3.
4.
Series of novel furan/thiophene and piperazine‐containing 1,2,4‐triazole Mannich bases and bis(1,2,4‐triazole) Mannich bases have been conveniently synthesized via Mannich reaction with triazole Schiff bases, various piperazine derivatives, and formaldehyde as intermediates in good yields. Their structures were characterized by melting points, 1H NMR, 13C NMR, IR and elemental analysis. The preliminary bioassay showed that most compounds exhibited significant in vitro and in vivo fungicidal activity against several test plant fungi. Among 32 new compounds, the trifluoromethyl‐containing compounds showed superior activity than the methyl‐containing ones. Several compounds, such as F8 , F9 , F10 , G5 , H7 , H8 , I3 and I4 , were comparable with some commercial fungicides against different fungi during the present study and could be further structurally optimized. Meanwhile, several compounds showed good herbicidal activity against Brassica campestris at 100 µg/mL and KARI inhibitory activity at 200 µg/mL. However, compounds exhibited poor insecticidal activity against oriental armyworm at 200 µg/mL in the preliminary studies. The research results will provide useful information for the design and discovery of new agrochemicals with novel heterocyclic structures.  相似文献   

5.
Reaction of N,N′‐bis(2‐pyridinyl, 3‐pyridinyl, 4‐pyridinyl, 2‐thiazolyl, 4‐nitrophenyl, and 2‐benzothiazolyl)methanediamines 1af with oxalyl chloride in dry dichloroethane in the presence of pyridine affords the corresponding 1,3‐bis (heteroaryl)‐4,5‐imidazolidinediones 3af in good to excellent yields. The essential role of pyridine in the reaction mixture is described, and reaction details as well as product characterization is discussed.  相似文献   

6.
In the title complex, {[Cd2(C8H3NO6)2(C4H10N2)(H2O)4]·2H2O}n, the CdII atoms show distorted octahedral coordination. The two carboxylate groups of the dianionic 2‐nitroterephthalate ligand adopt monodentate and 1,2‐bridging modes. The piperazine molecule is in a chair conformation and lies on a crystallographic inversion centre. The CdII atoms are connected via three O atoms from two carboxylate groups and two N atoms from piperazine molecules to form a two‐dimensional macro‐ring layer structure. These layers are further aggregated to form a three‐dimensional structure via rich intra‐ and interlayer hydrogen‐bonding networks. This study illustrates that, by using the labile CdII salt and a combination of 2‐nitroterephthalate and piperazine as ligands, it is possible to generate interesting metal–organic frameworks with rich intra‐ and interlayer O—H...O hydrogen‐bonding networks.  相似文献   

7.
The three‐dimensional (3D) samarium phosphonate framework [Sm2(H2L)3]n · 5n(H2O) ( 1 ) [H4L = N,N′‐piperazine‐bis(methylenephosphonic acid)] was synthesized by hydrothermal reaction of Sm2O3 with N,N′‐piperazine‐bis(methylenephosphonic acid) hydrochloride in the presence of glutaric acid. Single‐crystal X‐ray diffraction analysis reveals that it has a 3D open framework structure with helical channels along the crystallographic c axis. The channels are filled up by discrete pentameric water clusters, which are hydrogen‐bonded to the host. Compound 1 displays two interesting structural features: (a) two of three H2L2– ligands adopt the less stable a,e‐cis conformation; (b) both of the SmIII ions exhibit rather unusual octahedral coordination arrangements. In addition, the photoluminescent property was investigated.  相似文献   

8.
1‐(Bromoacetyl)‐3‐methylazulene (1a) and methyl 3‐(bromoacetyl)azulene‐1‐carboxylate (1b) reacted with thioamides 3a,b and thioureas 3c,d in boiling ethanol to give the corresponding (4‐thiazolyl)azulenes 4a‐d and 5a‐d in good yields, respectively. The reactions of dibromoacetyl‐substituted azulene (2) also gave (4‐thiazolyl) azulenes 5a‐d in lower yields and the azulene 2 was recovered. By heating compounds 5a‐d in 100% phosphoric acid, the ester group was eliminated to yield 1‐(4‐thiazolyl)azulenes 6a‐d. Compounds 1a,b reacted with thiosemicarbazones 7a‐f to afford [(2‐alkylidenehydrazino)thiazol‐4‐yl]azulenes 8a‐f and 9a‐f in moderate to high yields via their hydromides.  相似文献   

9.
The styryl ketonic Mannich base 2 has been used as a precursor in the synthesis of 2‐pyrazolines having a basic side chain at C‐3 and a phenolic Mannich base at C‐5. Treatment of the bis(styryl ketonic bases) 6a and 8a with phenylhydrazine affords the bis(3‐functionalized 2‐pyrazolines) 7 and 9 . The transamination between the styryl keto base 10 and 4‐aminoantipyrine leads to 12 , which reacts with piperazine to give 13 . N‐Nitrosation of the sec‐Mannich bases 15a – d followed by reductive cyclization affords 2‐pyrazolines 17a – d . The keto base 14b has been used for the synthesis of 2‐pyrazolines having a phenolic Mannich base at C‐3 and its reaction with 3,5‐dimethyl‐1H‐pyrazole affords 23 . The alkylation of 3‐methyl‐1‐phenyl‐2‐pyrazolin‐5‐one with the bis(Mannich base) 25 was investigated.  相似文献   

10.
A one step synthesis protocol for the conversion of heteroylthiosemicarbazides and 2,3‐dichloro‐1,4‐naphthoquinone to naphtho[2,3‐d]thiazoles, naphtho[2,3‐e][1,3,4]thiadiazines as well as bis(naphtho[2,3‐d]thiazolyl)copper(II) derivatives is described. The products were conclusively confirmed by single crystal X‐ray analyses. A mechanism for the formation of the products is presented.  相似文献   

11.
In contrast to the previously reported acid‐catalyzed reaction of 2‐aminothiazole with aqueous formaldehyde in water at 0‐5 °C which afforded N,N′‐bis(2‐thiazolyl)methanediamine ( 4 ), 5,5′‐methylenebis(2‐aminothiazole) ( 5 ) is obtained as the unique product under reflux conditions. Reaction of 2‐aminobenzothiazole with aqueous formaldehyde in acetonitrile at 0‐5 °C or under reflux conditions produces (2‐benzothiazolylamino)methanol ( 6 ) or N,N′‐bis(2‐benzothiazolyl)methanediamine ( 7 ), respectively. Heating monoamine 6 in acetonitrile remarkably yields the symmetric diamine 7 . While cyclocondensation of 2‐aminothiazole with aqueous glyoxal in acetonitrile gives 3,4,8,9‐tetrahydroxy‐7,10‐bis(2‐thiazolyl)‐2,5‐dioxa‐7,10‐diazabicyclo[4.4.0]decane ( 8 ), reaction of 2‐aminobenzothiazole with glyoxal fails to produce similar results; In the presence of aqueous formaldehyde, although the former reaction leads to the formation of 4‐hydroxy‐5‐(thiazolylamino)‐1,3‐bis(2‐thiazolyl)imidazolidine ( 9 ), utilization of 2‐aminobenzothiazole gives 4,5‐dihydroxy‐1,3‐bis(2‐benzothiazolyl)imidazolidine ( 10 ). Condensation of either 6 or 7 with aqueous glyoxal affords compound 10 . Details of the reactions will be discussed in this presentation.  相似文献   

12.
A number of novel bicinnolines containing piperazine moieties, 4a – o , were synthesized via polyphosphoric acid‐catalyzed intramolecular cyclization of the respective acyl amidrazone derivatives ( 3a – o ). On the other hand, the amidrazones ( 3a – o ) were prepared by reaction of N′,N″‐(biphenyl‐4,4′‐diyl)bis(2‐oxopropane hydrazonoyl chloride) ( 2 ) with the appropriate cyclic sec‐amines in the presence of trimethylamine in absolute ethanol. Structures of the newly synthesized compounds were confirmed by NMR and mass spectral data. The antitumor activity of compounds 4a – o was evaluated in vitro on human breast cancer MDA‐231 by a cell viability assay. Results revealed that compounds 4k , 4n , and 4o exhibit potential cytotoxic effects (>70%) on the cancer cells. Additionally, the antimicrobial activity of compounds 4a – o was evaluated against three clinical microbial strains: Escherichia coli (Gram‐negative bacteria), Staphylococcus aureus (Gram‐positive bacteria), and Candida albicans (fungi/yeast). Results revealed that compounds 4e and 4k exhibit good activity against all three strains included in the study and that compound 4d displays excellent activity against Saureus strain with a minimum inhibitory concentration value of 0.187 mg/mL.  相似文献   

13.
Two related proton‐transfer compounds, namely piperazine‐1,4‐diium 4‐oxo‐4H‐pyran‐2,6‐dicarboxylate monohydrate, C4H12N22+·C7H2O62−·H2O or (pipzH2)(cdo)·H2O, (I), and piperazine‐1,4‐diium bis(6‐carboxy‐4‐oxo‐4H‐pyran‐2‐carboxylate), C4H12N22+·2C7H3O6 or (pipzH2)(cdoH)2, (II), were obtained by the reaction of 4‐oxo‐4H‐pyran‐2,6‐dicarboxylic acid (chelidonic acid, cdoH2) and piperazine (pipz). In (I), both carboxyl H atoms of chelidonic acid have been transferred to piperazine to form the piperazine‐1,4‐diium ion. The structure is a monohydrate. All potential N—H donors are involved in N—H...O hydrogen bonds. The water molecule spans two anions via the 4‐oxo group of the pyranose ring and a carboxylate O atom. The hydrogen‐bonding motif is essentially two‐dimensional. The structure is a pseudomerohedral twin. In the asymmetric unit of (II), the anion consists of monodeprotonated chelidonic acid, while the piperazine‐1,4‐diium cation is located on an inversion centre. The single carboxyl H atom is disordered in two respects. Firstly, the disordered H atom is shared equally by both carboxylic acid groups. Secondly, the H atom is statistically disordered between two positions on either side of a centre of symmetry and is engaged in a very short hydrogen‐bonding interaction; the relevant O...O distances are 2.4549 (11) and 2.4395 (11) Å, and the O—H...O angles are 177 (6) and 177 (5)°, respectively. Further hydrogen bonding of the type N—H...O places the (pipzH2)2+ cations in pockets formed by the chains of (cdoH) anions. In contrast with (I), the (pipzH2)2+ cations form hydrogen‐bonding arrays that are perpendicular to the anions, yielding a three‐dimensional hydrogen‐bonding motif. The structures of both (I) and (II) also feature π–π stacking interactions between aromatic rings.  相似文献   

14.
The synthetic precursors pyridine‐2(1H)‐thiones 2a , b and bis(pyridine‐2(1H)‐thione) derivative 4 , using aldehydes 1a , b incorporating 2,6‐dibromophenoxy moiety, were prepared and used to synthesize the novel target materials bis[(5‐cyanopyridin‐6‐yl)sulfanyl]butanes 5a , b , bis(2‐S‐alkylpyridines) 8a , b , and bis(3‐aminothieno[2,3‐b]pyridines) 13a–c through facile procedures. Characterization of the newly prepared compounds via elemental analyses and spectral data is established.  相似文献   

15.
Abstract. Two new coordination polymers {[Cd2(BDC)2(3‐bpmp)(H2O)2] · 2H2O}n ( 1 ) and [Cd2(BDC)2(4‐bpmp)]n ( 2 ) [H2BDC = 5‐hydroxy‐isophthalic acid, 3‐bpmp = 1,4‐bis(3‐pyridylmethy)piperazine, and 4‐bpmp = 1,4‐bis(4‐pyridylmethy) piperazine] were synthesized via hydrothermal synthesis, and further characterized by IR spectroscopy, elemental analysis, XRD, and X‐ray crystallography. Complex 1 shows a two‐dimensional (4,4) sql topology and complex 2 features an 8‐connected hex topology. Moreover, the luminescent properties of complexes 1 and 2 were investigated in the solid state at room temperature.  相似文献   

16.
This paper reports on the synthesis and physico‐chemical, mechanical, and biological characterization of two sets of poly(amidoamine) (PAA) hydrogels with potential as scaffolds for in vivo peripheral nerve regeneration. They are obtained by polyaddition of piperazine with N,N′‐methylenebis(acrylamide) or 1,4‐bis(acryloyl)piperazine with 1,2‐diaminoethane as cross‐linking agent and exhibit a combination of relevant properties, such as mechanical strength, biocompatibility, biodegradability, ability to induce adhesion and proliferation of Schwann cells (SCs) preserving their viability. Moreover, the most promising hydrogels, that is those deriving from 1,4‐bis(acryloyl)piperazine, allow the in vitro growth of the sensitive neurons of the dorsal root ganglia, thus getting around a critical point in the design of conduits for nerve regeneration.

  相似文献   


17.
Reaction of 1,4‐di‐(3‐aminofurazan‐4‐oyl)piperazine 4 with dibromoisocyanurate (DBI) affords azofurazan‐annulated macrocyclic lactam 7 ; the X‐ray structure of the macrocycle 7 is reported. The synthesis was started with 3‐aminofurazan‐4‐carboxylic acid 1 . A one‐pot method for preparation of the amino acid was elaborated from commercially available cyanoacetic ester. Amides of the acid have been prepared via the esterification and subsequent animation.  相似文献   

18.
Under basic conditions 2,6‐bis(bromomethyl)‐4‐pyrone 8 reacts with tetraethylene glycol to yield the unexpected macrocycle 9 , which is related to the antibiotic Kjellmanianone 10 . We propose that this ring transformation proceeds via the cyclopropyl intermediate d (Scheme 2), which undergoes a ring opening reaction comparable to the Favorskii rearrangement. Also, 8 reacts with methanol/sodium methoxide to yield the 3(2H)‐furanone derivative 11 , the formation of which is suggested to proceed via the intermediate k with a carbenium‐oxonium‐ion subunit (Scheme 3). The structure of the 3(2H)‐furanone derivative was confirmed by X‐ray analysis.  相似文献   

19.
A series of new C2‐symmetric (1S,2S)‐cyclohexane‐1,2‐dicarboxamides was synthesized from (1S,2S)‐cyclohexane‐1,2‐dicarbonyl dichloride and N‐benzyl‐substituted aromatic amines, which were prepared from 2‐aminopyridine, 2‐chloroaniline, and 2‐aminophenol via imine formation with benzaldehyde and subsequent reduction with NaBH4. (1S,2S)‐N,N′‐Dibenzyl‐N,N′‐bis[2‐(benzyloxy)phenyl]cyclohexane‐1,2‐dicarboxamide was converted to (1S,2S)‐N,N′‐dibenzyl‐N,N′‐bis(2‐hydroxyphenyl)cyclohexane‐1,2‐dicarboxamide via hydrogenolysis in the presence of Pd(OH)2 on active carbon powder.  相似文献   

20.
An efficient, solvent‐free and 18‐crown‐6 catalyzed method for the synthesis of N‐alkyl‐4‐(4‐(5‐(2‐(alkyl‐amino)thiazol‐4‐yl)pyridin‐3‐yl)phenyl)thiazol‐2‐amine, N‐alkyl‐4‐(5‐(2‐alkyamino)thiazol‐4‐yl)pyridine‐3‐yl)thiazol‐2‐amine, and 4,4′‐bis‐{2‐[amino]‐4‐thiazolyl}biphenyl bis‐heterocyclic derivatives via microwave accelerated cyclization is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号