首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2‐Aminopyridine‐3‐carbonitrile derivative 1 reacted with each of malononitrile, ethyl cyanacetate, benzylidenemalononitrile, diethyl malonate, and ethyl acetoacetate to give the corresponding [1,8]naphthyridine derivatives 3 , 5 , 8 , 11 , and 14 , respectively. Further annulations of 3 , 5 , and 8 gave the corresponding pyrido[2,3‐b][1,8]naphthyridine‐3‐carbonitrile derivative 17 , pyrido[2,3‐h][1,6]naphthyridine‐3‐carbonitrile derivatives 18 and 19 , respectively. The reaction of 1 with formic acid, formamide, acetic anhydride, urea or thiourea, and 4‐isothiocyanatobenzenesulfonamide gave the pyridopyrimidine derivatives 20a , b , 21 , 22a , b , and 26 , respectively. Treatment of compound 1 with sulfuric acid afforded the amide derivative 27 . Compound 27 reacted with 4‐chlorobenzaldehyde and 1H‐indene‐1,3(2H)‐dione to give the pyridopyrimidine derivative 28 and spiro derivative 30 , respectively. In addition, compound 1 reacted with halo compounds afforded the pyrrolopyridine derivatives 32 and 34 . Finally, treatment of 1 with hydrazine hydrate gave the pyrazolopyridine derivative 35 . The structures of the newly synthesized compounds were established by elemental and spectral data.  相似文献   

2.
The reaction of 3‐N‐(2‐mercapto‐4‐oxo‐4H‐quinazolin‐3‐yl)acetamide ( 1 ) with hydrazine hydrate yielded 3‐amino‐2‐methyl‐3H‐[1,2,4]triazolo[5,1‐b]quinazolin‐9‐one ( 2 ). The reaction of 2 with o‐chlorobenzaldehyde and 2‐hydroxy‐naphthaldehyde gave the corresponding 3‐arylidene amino derivatives 3 and 4 , respectively. Condensation of 2 with 1‐nitroso‐2‐naphthol afforded the corresponding 3‐(2‐hydroxy‐naphthalen‐1‐yl‐diazenyl)‐2‐methyl‐3H‐[1,2,4]triazolo[5,1‐b]quinazolin‐9‐one ( 5 ), which on subsequent reduction by SnCl2 and HCl gave the hydrazino derivative 6. Reaction of 2 with phenyl isothiocyanate in refluxing ethanol yielded thiourea derivative 7. Ring closure of 7 subsequently cyclized on refluxing with phencyl bromide, oxalyl dichloride and chloroacetic acid afforded the corresponding thiazolidine derivatives 8, 9 and 10 , respectively. Reaction of 2‐mercapto‐3‐phenylamino‐3H‐quinazolin‐4‐one ( 11 ) with hydrazine hydrate afforded 2‐hydrazino‐3‐phenylamino‐3H‐quinazolin‐4‐one ( 12 ). The reactivity 12 towards carbon disulphide, acetyl acetone and ethyl acetoacetate gave 13, 14 and 15 , respectively. Condensation of 12 with isatin afforded 2‐[N‐(2‐oxo‐1,2‐dihydroindol‐3‐ylidene)hydrazino]‐3‐phenylamino‐3H‐quinazolin‐4‐one ( 16 ). 2‐(4‐Oxo‐3‐phenylamino‐3,4‐dihydroquinazolin‐2‐ylamino)isoindole‐1,3‐dione ( 17 ) was synthesized by the reaction of 12 with phthalic anhydride. All isolated products were confirmed by their ir, 1H nmr, 13C nmr and mass spectra.  相似文献   

3.
2‐(2‐Oxindolin‐3‐ylidene)malononitrile ( 1a ) or (E,Z)‐ethyl 2‐cyano‐2‐(2‐oxindolin‐3‐ylidene)acetate ( 1b ) or isatin‐β‐thiosemicarbazone ( 1c ) undergoes reactions with prototype hydrazine hydrate itself and some of its simple congeners to give hydrazone derivatives bearing indoline‐2‐one moiety ( 2 ). The hydrazone derivatives ( 2 ) when heated with acetyl acetone or ethyl acetoacetate in dry pyridine afforded the spiro indoline derivatives ( 3a , 3b ). Also, cinnoline derivative ( 9 ) is obtained by action of hydrazine hydrate on the N‐acetyl derivative of ( 6a ). The structures of the newly synthesized compounds were evaluated by IR, 1H‐NMR spectroscopy, mass spectra and elemental analyses.  相似文献   

4.
The synthesis of ketanserin ( 5 ) and its hydrochloride salt ( 5.HCl ) using respectively equimolar amounts of 3‐(2‐chloroethyl)‐2,4‐(1H,3H)‐quinazolinedione ( 2 ) with 4‐(parafluorobenzoyl)piperidine ( 3 ) and dihydro‐5H‐oxazole(2,3‐b)quinazolin‐5‐one ( 1 ) with hydrochloride salt of 4‐(parafluorobenzoyl)piperidine ( 3.HCl ) is reinvestigated. The one‐pot reaction of ethyl‐2‐aminobenzoate with ethyl chloroformate and ethanol amine has afforded 3‐(2‐chloroethyl)‐2,4‐(1H,3H)‐quinazolinedione ( 2 ) (86%) that was then refluxed with 4‐(parafluorobenzoyl)piperidine ( 3 ) in ethyl methyl ketone in the presence of sodium carbonate to obtain free base of ketanserin (87%). In another attempt, a very pure hydrochloride salt of ketanserin ( 5.HCl ) was synthesized using equimolar amounts of dihydro‐5H‐oxazole(2,3‐b)quinazolin‐5‐one ( 1 ) and hydrochloride salt of 4‐(parafluorobenzoyl)piperidine ( 3.HCl ) by a solvent‐less fusion method. Thus, under optimized conditions, 180°C and a reaction time of 30 min, the powder mixture was transformed into glassy crystals that were initially readily soluble in chloroform but were transformed afterwards over time (2 h) to white precipitates ( 5.HCl ) suspended in chloroform with a yield of 72%.  相似文献   

5.
2‐Amino‐3‐cyano‐4,5,6,7‐tetrahydrobenzo[b]thiophene 1a or 2‐amino‐3‐cyano‐4,7‐di‐ phenyl‐5‐methyl‐4H‐pyrano[2,3‐c]pyrazole 2a reacted with phenylisocyanate in dry pyridine to give 2‐(3‐phenylureido)‐3‐cyanobenzo[b]thiophene 1b or 2‐disubstituted amino‐3‐cyanopyranopyrazole 2b derivative. However, when 1a and 2a were refluxed with carbon disulfide in 10% ethanolic sodium hydroxide solution, they afforded the thieno[2,3‐d]pyrimidin‐2,4‐dithione derivative 5 in the former case, 2,4‐dicyano‐1,3‐bis(dithio carboxamino)cyclobuta‐1,3‐ diene 6 and pyrazolopyranopyrido[2,3‐d]pyrimidin‐ 2,4‐dithione derivative 7 in the latter one. Treatment of 2a with thiourea in refluxing ethanol in the presence of potassium carbonate gave 2,2′‐dithiobispyrimidine derivative 9 (major) in addition to pyranopyrazole derivative 10 and 2,2′‐dithiobis ethoxypyrimidine derivative 11 in minor amounts. The structures of all products were evidenced by microanalytical and spectral data. © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:6–11, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.20070  相似文献   

6.
Reaction of benzotriazol‐1‐yl acetone 1 with phenyl isothiocyanate followed with α‐chloroacetone or ethyl‐α‐chloroacetate afforded 2‐anilinothiophenes 3 or 4 , respectively. Treatment of 3 with malononitrile at different reaction conditions afforded 6 or 7 . Reaction of 1 with CS2 in DMF and phenacylbromide afforded S‐alkylated thiophene 10 . Reactions of the latter compound with different active methylene nitriles afforded thienylthiopyridine derivatives 14 and 15 . Condensation of 10 with hydrazine hydrate afforded hydrazon derivative 16 . Reaction of thiophene 17 with formamide in DMF afforded 19 which converted to N‐thienylpyrimidine 20 when treated with malononitrile. The structure of the newly synthesized compounds has been established on the basis of their analytical and spectral data. The compounds were also investigated for antibacterial and antifungal activities.  相似文献   

7.
Annulations of 2‐amino‐1,3,4‐thiadiazole ( 1 ) with α,β‐unsaturated carbonyl compounds 2 , 5 , and 9 afforded thiadiazolo[3,2‐a]pyrimidin 3 , benzamide 7 , and bis‐pyrazole derivative 11 . Cyclization of benzamide 7 with POCl3 gave binary imidazole derivative 8 . Moreover, alkylation of 1 with 2‐bromo‐1‐(2H‐chromen‐3‐yl) ethanone ( 9 ) followed by cyclization gave imidazo[2,1‐b]‐1,3,4‐thiadiazole derivative 15 . Multicomponent reaction of 1 with heterocyclic and/or aromatic aldehyde and thioglycolic acid afforded the corresponding thiazolidinones 17 and 19 . Finally, a one‐pot synthesis of 1 with isatin and thiosemicarbazide furnished the spirotriazole 20 . The newly synthesized compounds were evaluated as antitumor agents.  相似文献   

8.
4‐Ethoxycarbonyl‐5‐phenyl‐2,3‐dihydrofuran‐2,3‐dione 1 reacts with aldehydes via the acylketene intermediate 2 giving the 1,3‐dioxin‐4‐ones 3a‐e and the 1,4‐bis(5‐ethoxycarbonyl‐4‐oxo‐6‐phenyl‐4H‐1,3‐dioxin‐2‐yl)benzene 4 , and a one step reaction between dibenzoylmethane and oxalylchloride gave 3,5‐dibenzoyl‐2,6‐diphenyl‐4‐pyrone 7 . The reaction of 1 with dibenzoylmethane, a dicarbonyl compound, provided ethyl 3‐benzoyl‐4‐oxo‐2,6‐diphenylpyran‐5‐carboxylate derivative 9 . Compound 9 was converted into the corresponding ethyl 3‐benzoyl‐4‐hydroxy‐2,6‐diphenylpyridine‐5‐carboxylate derivative 10 via its reaction with ammonium hydroxyde solution in 1 ‐butanol.  相似文献   

9.
The reaction of 3‐methylthiazolo[3,2‐a]benzimidazole‐2‐carboxylic acid ethyl ester (1) with hydrazine hydrate gives the hydrazide 2 which reacts with CS2/KOH to afford the potassium salt 3. Treatment of 3 with l‐aryl‐2‐bromoethanones 4a,b afforded the 1,3‐thiazoline derivatives 6a,b, respectively, while the reaction of 3 with hydrazine hydrate afforded 1,2,4‐triazole‐3‐thione derivative 9. The reaction of 9 with l‐aryl‐2‐bromoethanones 4a,b and with hydrazonyl chlorides 11a,b gave the 1,2,4‐triazolo[3,4‐b]‐1,3,4‐thiadiazine derivatives 10a,b and 12a,b, respectively. Treatment of hydrazide 2 with phenyl isothiocyanate in refluxing benzene gave the thiosemicarbazide derivative 16. The latter reaction gave 1,3,4‐oxadiazole derivative 17 when benzene was replaced by DMF. Cyclization of the thiosemicarbazide derivative 16 with NaOH resulted in the formation of the 1,2,4‐triazole‐3‐thione derivative 18.  相似文献   

10.
Condensation of 4‐methylsulfonylaniline with aryl aldehyde in ethanol‐tetrahydrofuran afforded the imino compound 3 . 1,3‐Cycloaddtion of diazomethane with compound 3 followed by oxidazation of the triazoline 4 with potassium permanganate gave 1‐(4‐methylsulfonylphenyl)‐5‐aryl‐1,2,3‐triazoles 5 . Similarly, condensation of 4‐(N,N‐dibenzylaminosulfonyl)aniline with aryl aldehyde followed by 1,3‐cycloaddition of diazomethane with the imino compound 11 and the subsequent oxidation of triazoline 12 with potassium permanganate yielded the triazole 13 . Debenzylation of compound 13 with sulfuric acid gave the desired compound 1‐(4‐aminosulfonylphenyl)5‐aryl‐1,2,3‐triazoles 14 .  相似文献   

11.
A simple and efficient method has been developed for the synthesis of 1H‐pyrazolo[1,2‐b]phthalazine‐5,10‐dione derivatives through a one‐pot three‐component condensation reaction of 2‐chloro‐3‐formyl quinolines, malononitrile/ethyl cyanoacetate and 2,3‐dihydro‐1,4‐phthalazinedione using a catalytic amount of piperidine in refluxing ethanol. All the synthesized compounds were screened for their antibacterial activity against a panel of pathogenic strains of bacteria and fungi.  相似文献   

12.
A new and facile method for the preparation of 2‐substituted 2,3‐dihydro‐3,3‐dimethyl‐1H‐isoindol‐1‐ones 3 and 3,3‐disubstituted (E)‐1‐(arylimino)‐1,3‐dihydroisobenzofurans 6 has been developed. Thus, treatment of N‐alkyl(or aryl)‐2‐(1‐methylethen‐1‐yl)benzamides 2 with concentrated hydriodic acid (HI) in MeCN at room temperature afforded 3 . Similar treatment of N‐aryl‐2‐(1‐phenylethen‐1‐yl)benzamide 5 with concentrated HI at 0° afforded 6 .  相似文献   

13.
The reaction of the aminopyrazole 1 with benzenesulfonyl chloride, arenediazonium salt, chloroacetyl chloride, ethoxy methyleneamlononitrile and with ethyl 2‐cyano‐3‐ethoxyacrylate gave the substituted 3‐methyl‐1‐phenylpyrazole 2–5a,b . Compound 5b was cyclized to 6 and to 7 by treating it with AlCl3 and with POCl3, respectively. Compound 6 converted to 7 by boiling it in POCl3/PCl5. Compound 10b was produced through reaction of 9 with acetophenone. Reaction of 1 with benzylidinemalononitrile afforded 11 . New methods for preparation of 15 and 16 are described. The reaction of 8 with malononitrile, thiosemicarbazide, phenyl hydrazine and acetophenone afforded compounds 18–21 . The reaction of 21 with malononitrile gave 22 . Compounds 23–26 were produced upon reaction of 10a with malononitrile, phenyl hydrazine, thiosemicarbazide, semicarbazide and with benzaldehyde, respectively.  相似文献   

14.
In the reaction of 4‐chlorocoumarin‐3‐carbaldehyde with malononitrile in the presence of piperidine, a piperidinium salt of a novel tricyclic chromeno[3,4‐c]pyridine derivative was isolated instead of the expected “tert‐amino effect” product. When hexamethyleneimine (azepane) was used as a base, the corresponding azepanium salt (same anion) was obtained. Both structures have been formulated on the basis of their spectral (IR, NMR, MS) behavior and elemental analyses. In addition, the structure of the piperidinium salt was confirmed by means of X‐ray crystallographic analysis.  相似文献   

15.
The one‐pot four‐component reaction of benzohydrazide, acetylenedicarboxylate, aromatic aldehydes and malononitrile in ethanol with triethylamine as base catalyst afforded functionalized 1‐benzamido‐1,4‐dihydropyridines in satisfactory yields. Under similar conditions, picolinohydrazide or nicotinohydrazide can also be successfully utilized in the reactions to give corresponding functionalized 1,4‐dihydropyridines. 1H NMR data indicated that an equilibrium of cis/trans‐conformations exist in 1‐benzamido‐1,4‐dihydropyridines.  相似文献   

16.
p‐Diacetyl benzene 1 undergoes bromination to afford p‐bromoacetyl phenacyl bromide 2 . Compound 2 reacts with twofold excess of malononitrile to afford 2‐{2‐[4‐(3,3‐Dicyanopropionyl)‐phenyl]‐2‐oxo‐ethyl}‐malononitrile 3 . Compound 3 could be cyclized to afford the 1,4‐phenylene‐bis‐furan derivative 4 . Compound 3 reacts also with a twofold excess of hydrazine hydrate and phenyl hydrazine under dry conditions at RT to afford the bis‐pyrazole derivatives 5a , 5b , respectively. The reaction of 5a , 5b with the same reagents in refluxing dioxane afforded the bis‐pyrazolopyridazine derivatives 7a , 7b , respectively. The azo coupling of compound 3 with arene diazonium salts afforded the bis‐pyrazole derivatives 9a , 9b , 9c . The β‐keto esters 10a , 10b react with benzaldehyde and malononitrile in a one pot synthesis to afford the pyran derivatives 11a , 11b . These latter compounds react with hydrazine hydrate and urea derivatives to afford the pyrano[2,3‐c]pyrazoles 15a , 15b and the pyrano[2,3‐d]pyrimidine derivatives 17a , 17b , respectively.  相似文献   

17.
The reaction of the 2‐(1‐alkylhydrazino)‐6‐chloroquinoxaline 4‐oxides 1a,b with diethyl acetone‐dicarboxylate or 1,3‐cyclohexanedione gave ethyl 1‐alkyl‐7‐chloro‐3‐ethoxycarbonylmethylene‐1,5‐dihydropyridazino[3,4‐b]quinoxaline‐3‐carboxylates 5a,b or 6‐alkyl‐10‐chloro‐1‐oxo‐1,2,3,4,6,12‐hexahydroquinoxalino[2,3‐c]cinnolines 7a,b , respectively. Oxidation of compounds 5a,b with nitrous acid afforded the ethyl 1‐alkyl‐7‐chloro‐3‐ethoxycarbonylmethylene‐4‐hydroxy‐1,4‐dihydropyridazino‐[3,4‐b]quinoxaline‐4‐carboxylates 9a,b , whose reaction with base provided the ethyl 2‐(1‐alkyl‐7‐chloro‐4‐oxo‐1,4‐dihydropyridazino[3,4‐b]quinoxalin‐3‐yl)acetates 6a,b , respectively. On the other hand, oxidation of compounds 7a,b with N‐bromosuccinimide/water furnished the 4‐(1‐alkyl‐7‐chloro‐4‐oxo‐1,4‐dihydropyridazino[3,4‐b]quinoxalin‐3‐yl)butyric acids 8a,b , respectively. The reaction of compound 8a with hydroxylamine gave 4‐(7‐chloro‐4‐hydroxyimino‐1‐methyl‐1,4‐dihydropyridazino[3,4‐b]quinoxalin‐3‐yl)‐butyric acid 12 .  相似文献   

18.
Reaction 6H‐pyrrolo[3,2,1‐de ]acridine‐1,2‐dione ( 7 ) with cyclic 1,3‐dicarbonyl compounds in the presence of malononitrile or ethyl cyanoacetate generates spiro[4H‐pyran‐3,3′‐oxindoles] 8 .  相似文献   

19.
The reaction of 2,3‐dihydro‐2,3‐epoxy‐1,4‐naphthoquinone ( 4 ) with substituted anilines furnished the corresponding benzo[fused]heterocyclic derivatives 5 , 6 , 6a , 6b , 7 , 8 . Furthermore, treatment of benzo[a]phenothiazine derivative 7 with halo compounds, namely, ethyl bromoacetate, phenacyl bromide, dibromoethane, or chloroacetone afforded ether derivatives 11 , 12 , 13 , 14 , respectively. Moreover, the reaction of 11 with o‐substituted aniline gave the corresponding benzo[a]phenothiazin‐5‐one derivatives 15 , 16 , 17 and benzo[d][1,3]oxazin‐4‐one 18 , respectively. Finally, the chromenone derivative 19 was synthesized via the reaction of ester derivative 11 with salicyaldhyde in refluxing pyridine. The newly synthesized compounds were characterized by spectroscopic measurements (IR, 1H NMR, 13C NMR, and mass spectra).  相似文献   

20.
An efficient, one‐pot synthetic protocol for polyfunctionalized 1,4‐dihydropyridine‐fused‐1,3‐diazaheterocycles, a class of biologically active compounds, starting from 1,1‐bis(methylthio)‐2‐nitroethylene, 1,n‐diamine, arylaldehyde, and malononitrile is described. The reactions are completed within 12–15 h under refluxing conditions and in the presence of 10 mol % of piperidine as a basic catalyst to produce the title compounds in 60–75% yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号