首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 485 毫秒
1.
X‐ray diffraction (XRD) studies have shown that 2‐piperidyl‐5‐nitro‐6‐methylpyridine, C11H15N3O2, undergoes a structural phase transition at T = 240 K. The room temperature structure is tetragonal, space group I41/a, with the unit‐cell dimensions a = 13.993(2) and c = 23.585(5) Å. The pyridine ring takes trans conformation with respect to the piperidine unit. While pyridine is well ordered, the piperidine moiety shows apparent disorder resulting from a libration about the linking N C bond. The low‐temperature phase is monoclinic, space group I2/a. Contraction of the unit‐cell volume by 2.3% at 170 K enables the C H···O linkage between the molecules of the neighbouring stacks. As result, the asymmetric unit becomes bi‐molecular. The thermal librations of the piperidine and methyl groups become considerably reduced at 170 K and nearly fully reduced at about 100 K. The IR spectra and polarised Raman spectra agree with the X‐ray structure and confirm the disorder effect on the piperidine ring. The assignment of the bands observed was made on the basis of DFT chemical quantum calculations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
二元体系胶体晶体性质的实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
刘蕾  徐升华  孙祉伟  段俐  解京昌  林海 《物理学报》2008,57(11):7367-7373
利用Kossel衍射技术和反射光谱对由总体积分数为0.02的二元聚苯乙烯胶体体系(94nm+141nm)形成的胶体晶体的性质进行了研究,实验结果显示胶体晶体的形成时间,平均粒子间距,晶体结构都与二元胶体体系中两种粒子的数密度比相关,当94nm聚苯乙烯粒子相对于141nm聚苯乙烯粒子的数密度比趋向1∶1时,胶体晶体的形成时间延长,当94nm聚苯乙烯粒子相对于141nm聚苯乙烯粒子的数密度比由1∶0向0∶1变化时,胶体晶体的平均粒子间距变大,另外实验中发现在两种粒子的数密度比为5∶1时,胶体晶体出现了超晶格结 关键词: 胶体晶体 聚苯乙烯 Kossel衍射 反射光谱  相似文献   

3.
旋涂法快速制备双层二元胶体微球有序薄膜   总被引:2,自引:0,他引:2       下载免费PDF全文
刘忍肖  董鹏  陈胜利 《物理学报》2009,58(4):2820-2828
以较大粒径的聚苯乙烯或SiO2胶体微球的单层有序薄膜作基膜,较小粒径的SiO2微球作第二层,用分步旋涂法快速制备了二元双层胶体微球复合有序薄膜.膜中小粒径微球与大粒径微球的粒径比γ=020—056,大粒径与小粒径微球的排列方式可表示为LSxx=1,2,…,13).旋涂速度、旋涂时间、微球悬浮介质的黏度、悬浮液中微球的数密度、旋涂衬底的可润湿性等因素均会影响旋涂组装胶粒薄膜的质量.在旋涂衬底能够被胶体微球悬浮介质完全润湿的前提下,适宜的胶体微球数密度、旋涂速度、旋涂时间是旋涂组装有序薄膜的必要条件. 关键词: 复合有序薄膜 分步旋涂 胶体微球模板  相似文献   

4.
Combined small‐ and wide‐angle X‐ray scattering (SAXS/WAXS) is a powerful technique for the study of materials at length scales ranging from atomic/molecular sizes (a few angstroms) to the mesoscopic regime (~1 nm to ~1 µm). A set‐up to apply this technique at high X‐ray energies (E > 50 keV) has been developed. Hard X‐rays permit the execution of at least three classes of investigations that are significantly more difficult to perform at standard X‐ray energies (8–20 keV): (i) in situ strain analysis revealing anisotropic strain behaviour both at the atomic (WAXS) as well as at the mesoscopic (SAXS) length scales, (ii) acquisition of WAXS patterns to very large q (>20 Å?1) thus allowing atomic pair distribution function analysis (SAXS/PDF) of micro‐ and nano‐structured materials, and (iii) utilization of complex sample environments involving thick X‐ray windows and/or samples that can be penetrated only by high‐energy X‐rays. Using the reported set‐up a time resolution of approximately two seconds was demonstrated. It is planned to further improve this time resolution in the near future.  相似文献   

5.
A novel and simple method is described for preparing colloidal Cu‐doped ZnSe(S) quantum dots (QDs) in aqueous media by introducing copper ions using the same method as to prepare colloidal ZnSe(S). More specifically, the Cu‐doped ZnSe(S) are prepared through the nucleation‐doping method in the presence of 3‐mercaptopropionic acid as stabilizers using zinc perchlorate, copper sulphate, and NaHSe as precursors. Confirmation of the preparation of Cu‐doped ZnSe(S) nanocrystals (NCs) is done with absorption and emission spectroscopies (UV–vis and PL) as the QDs show intensive green emissions. The reduction of ions Cu2+ to Cu+ is confirmed by using electron paramagnetic resonance (EPR), in which Cu+ ions are silent. The size determination is performed by using transmission electron microscopy (TEM) and dynamic light scattering (DLS), resulting in Cu‐doped ZnSe(S) particles with a mean diameter of 4.6 ± 3.5 nm. The excellent stability observed for the nanoparticles overcomes the intrinsic instability of traditional aqueous Cu‐doped ZnSe(S) NCs.  相似文献   

6.
Composite ZnO/SiO2 nanoparticles were made by flame spray pyrolysis (FSP). Characteristics of the product powder and its crystallization behavior on post‐calcination were evaluated. Polyhedral aggregates of nano‐sized primary particles consisting of ZnO nano‐crystals 1–3 nm in size and amorphous SiO2 were obtained by FSP. A short residence time in the flame can result in the co‐existence of the ZnO and SiO2 clusters without substitution or reaction hindering each other's grain growth. There was almost no change in the XRD pattern by calcination at 600 °C for 2 h, suggesting a high thermal stability of the ZnO nano‐crystals in the composite particles. A pure α‐willemite phase was obtained at 900 °C. At this calcination temperature, dC and dBET of the powder were 63 and 44 nm, respectively. The nano‐composite structure of the FSP‐made particles can suppress crystalline growth of ZnO during calcination to maintain a high reactivity of ZnO with SiO2, obtaining pure α‐willemite with high specific surface area at low calcination temperatures.  相似文献   

7.
Colloidal crystals can be formed of silica particles while those of titania particles are not known under the normal gravitational field, because of their high specific gravity. We found by the Kikuchi--Kossel diffraction technique that, when silica particles (diameter: D?=?170?nm; density: ρ?=?2.2?g cm?3) are mixed with titania particles (D?=?127?nm; ρ?=?3.9?g cm?3), colloidal crystals are formed. Colloidal crystals started out with body-centred-cubic structure and changed to face-centred-cubic structures after about 60 days. Transitions began from the bottom of the container. Thus, the transitions are considered to be due to gravitational sedimentation. It is significant that the crystal growth process, which has not been observed in one-component dispersions of the silica particles, was found using titania particles with a wide range of the practical applicability.  相似文献   

8.
Resonant Raman scattering spectra of ultrasmall (<2 nm) magic‐size nanocrystals (NCs) are reported. The spectra of CdS and CdSx Se1‐x NCs, resonantly excited with 325 nm and 442 nm laser lines, correspondingly, reveal broad features in the range of bulk optical phonons. The relatively large width, ~50 cm‐1, and downward shift, ~20 cm‐1, of the Raman bands with respect to the longitudinal optical phonon in bulk crystals and large NCs are discussed based on the breaking of the translational symmetry and bond distortion in these ultrasmall NCs. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Crack‐free (100–x) SiO2x SnO2 glass‐ceramic monoliths have been prepared by the sol–gel method obtaining for the first time SnO2 concentrations of 20% with annealing at 1100 °C. Heat‐treatment resulted in the formation and growth of SnO2 nanocrystals within the silica matrices. Combined use of Fourier transform–Raman spectroscopy and in situ high‐temperature X‐Ray diffraction shows that SnO2 particles begin to crystallize in the cassiterite‐type phase at 80 °C and that their average apparent size remains around 7 nm, even after annealing at 1100 °C. Nanocrystal sizes and size distributions determined by low‐wavenumber Raman are in good agreement with those obtained from transmission electron microscopy measurements. Results indicate that the formation and the growth of SnO2 nanocrystals impose a residual porosity in the silica matrix. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Using the scanning transmission X‐ray microscope at BESSY II, colloidal structures from a Chernozem soil have been studied with a spatial resolution around 60 nm and a spectral resolution of 1700 at the K‐absorption edge of carbon. Elemental mapping has been used to determine the distribution of organic matter within the colloidal structures. Spectra have been extracted from image stacks to obtain information about the chemical state. For the analysis of the latter, principal component analysis and cluster analysis have been applied. It was possible, for example, to discriminate clay particles against organic components.  相似文献   

11.
Sub‐micrometer spherical particles that are obtained by pulsed laser melting in liquid (PLML) are usually observed to be single crystalline, and it is suggested that they are mechanically very strong. In this study, fracture tests of various sub‐micrometer spherical particles are performed by compressive force application. The results indicate that B4C and TiO2 sub‐micrometer spherical particles exhibit brittle fracture behavior under tensile fracture mode at the center of the particles. The fracture strength of the sub‐micrometer spherical particles is larger than that of the bulk material reported in the literature by about one order of magnitude. TiO2 sub‐micrometer spherical particles obtained by PLML are stronger than the commercially available TiOx sub‐micrometer spherical particles with a porous structure. In addition, due to the single crystallinity of particles, smaller particles have larger fracture strength, becoming up to 10–40% of ideal tensile fracture strength calculated based on density functional theory. Thus, these results demonstrate that sub‐micrometer spherical particles obtained using PLML exhibit fairly strong and unique mechanical properties, and therefore they are very promising for various mechanical applications at the sub‐micrometer size scale.  相似文献   

12.
A new small‐angle scattering technique in reflection geometry is described which enables a topological study of rough surfaces. This is achieved by using long‐wavelength soft X‐rays which are scattered at wide angles but in the low‐Q range normally associated with small‐angle scattering. The use of nanometre‐wavelength radiation restricts the penetration to a thin surface layer which follows the topology of the surface, while moving the scattered beam to wider angles preventing shadowing by the surface features. The technique is, however, only applicable to rough surfaces for which there is no specular reflection, so that only the scattered beam was detected by the detector. As an example, a study of the surfaces of rough layers of silicon produced by the deposition of nanoparticles by blade‐coating is presented. The surfaces of the blade‐coated layers have rough features of the order of several micrometers. Using 2 nm and 13 nm X‐rays scattered at angular ranges of 5°≤θ≤ 51° and 5°≤θ≤ 45°, respectively, a combined range of scattering vector of 0.00842 Å?1Q≤ 0.4883 Å?1 was obtained. Comparison with previous transmission SAXS and USAXS studies of the same materials indicates that the new method does probe the surface topology rather than the internal microstructure.  相似文献   

13.
The energy‐dependent scintillation intensity of Eu‐doped fluorozirconate glass‐ceramic X‐ray detectors has been investigated in the energy range from 10 to 40 keV. The experiments were performed at the Advanced Photon Source, Argonne National Laboratory, USA. The glass ceramics are based on Eu‐doped fluorozirconate glasses, which were additionally doped with chlorine to initiate the nucleation of BaCl2 nanocrystals therein. The X‐ray excited scintillation is mainly due to the 5d–4f transition of Eu2+ embedded in the BaCl2 nanocrystals; Eu2+ in the glass does not luminesce. Upon appropriate annealing the nanocrystals grow and undergo a phase transition from a hexagonal to an orthorhombic phase of BaCl2. The scintillation intensity is investigated as a function of the X‐ray energy, particle size and structure of the embedded nanocrystals. The scintillation intensity versus X‐ray energy dependence shows that the intensity is inversely proportional to the photoelectric absorption of the material, i.e. the more photoelectric absorption the less scintillation. At 18 and 37.4 keV a significant decrease in the scintillation intensity can be observed; this energy corresponds to the K‐edge of Zr and Ba, respectively. The glass matrix as well as the structure and size of the embedded nanocrystals have an influence on the scintillation properties of the glass ceramics.  相似文献   

14.
PdAu nanocrystals are synthesised by Geobacter sulfurreducens, a dissimilatory metal‐reducing bacterium, and the resulting bimetallic nanocrystal‐decorated microbes are imaged using a range of advanced electron microscopy techniques. Specifically, the first example of elemental mapping of fully hydrated biological nanostructures using scanning transmission electron microscope (STEM) energy dispersive X‐ray (EDX) spectrum imaging within an environmental liquid‐cell is reported. These results are combined with cryo‐TEM and ex situ STEM imaging and EDX analysis with the aim of better understanding microbial synthesis of bimetallic nanoparticles. It is demonstrated that although Au and Pd are colocalized across the cells, the population of nanoparticles produced is bimodal, containing ultrasmall alloyed nanocrystals with diameters <3 nm and significantly larger core‐shell structures (>200 nm in diameter) which show higher Pd contents and exhibit a Pd enriched shell only a few nanometers thick. The application of high‐resolution imaging techniques described here offers the potential to visualize the microbe‐metal interface during the bioproduction of a range of functional materials by microbial “green” synthesis routes, and also key interfaces underpinning globally relevant environmental processes (e.g., metal cycling).  相似文献   

15.
At the National Synchrotron Radiation Research Center (NSRRC), which operates a 1.5 GeV storage ring, a dedicated small‐angle X‐ray scattering (SAXS) beamline has been installed with an in‐achromat superconducting wiggler insertion device of peak magnetic field 3.1 T. The vertical beam divergence from the X‐ray source is reduced significantly by a collimating mirror. Subsequently the beam is selectively monochromated by a double Si(111) crystal monochromator with high energy resolution (ΔE/E? 2 × 10?4) in the energy range 5–23 keV, or by a double Mo/B4C multilayer monochromator for 10–30 times higher flux (~1011 photons s?1) in the 6–15 keV range. These two monochromators are incorporated into one rotating cradle for fast exchange. The monochromated beam is focused by a toroidal mirror with 1:1 focusing for a small beam divergence and a beam size of ~0.9 mm × 0.3 mm (horizontal × vertical) at the focus point located 26.5 m from the radiation source. A plane mirror installed after the toroidal mirror is selectively used to deflect the beam downwards for grazing‐incidence SAXS (GISAXS) from liquid surfaces. Two online beam‐position monitors separated by 8 m provide an efficient feedback control for an overall beam‐position stability in the 10 µm range. The beam features measured, including the flux density, energy resolution, size and divergence, are consistent with those calculated using the ray‐tracing program SHADOW. With the deflectable beam of relatively high energy resolution and high flux, the new beamline meets the requirements for a wide range of SAXS applications, including anomalous SAXS for multiphase nanoparticles (e.g. semiconductor core‐shell quantum dots) and GISAXS from liquid surfaces.  相似文献   

16.
Atomic‐layer‐deposited aluminum oxide (AlOx) layers are implemented between the phosphorous‐diffused n+‐emitter and the Al contact of passivated emitter and rear silicon solar cells. The increase in open‐circuit voltage Voc of 12 mV for solar cells with the Al/AlOx/n+‐Si tunnel contact compared to contacts without AlOx layer indicates contact passivation by the implemented AlOx. For the optimal AlOx layer thickness of 0.24 nm we achieve an independently confirmed energy conversion efficiency of 21.7% and a Voc of 673 mV. For AlOx thicknesses larger than 0.24 nm the tunnel probability decreases, resulting in a larger series resistance. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
X‐ray photon correlation spectroscopy was used to probe the diffusive dynamics of colloidal particles in a shear flow. Combining X‐ray techniques with microfluidics is an experimental strategy that reduces the risk of X‐ray‐induced beam damage and also allows time‐resolved studies of processes taking place in flow cells. The experimental results and theoretical predictions presented here show that in the low shear limit for a `transverse flow' scattering geometry (scattering wavevector q perpendicular to the direction of flow) the measured relaxation times are independent of the flow rate and determined only by the diffusive motion of the particles. This is not generally valid and, in particular, for a `longitudinal flow' ( q ∥ flow) scattering geometry the relaxation times are strongly affected by the flow‐induced motion of the particles. The results here show that the Brownian diffusion of colloidal particles can be measured in a flowing sample and that, up to flux limitations, the experimental conditions under which this is possible are easier to achieve at higher values of q.  相似文献   

18.
A small‐angle X‐ray scattering (SAXS) set‐up has recently been developed at beamline I711 at the MAX II storage ring in Lund (Sweden). An overview of the required modifications is presented here together with a number of application examples. The accessible q range in a SAXS experiment is 0.009–0.3 Å?1 for the standard set‐up but depends on the sample‐to‐detector distance, detector offset, beamstop size and wavelength. The SAXS camera has been designed to have a low background and has three collinear slit sets for collimating the incident beam. The standard beam size is about 0.37 mm × 0.37 mm (full width at half‐maximum) at the sample position, with a flux of 4 × 1010 photons s?1 and λ = 1.1 Å. The vacuum is of the order of 0.05 mbar in the unbroken beam path from the first slits until the exit window in front of the detector. A large sample chamber with a number of lead‐throughs allows different sample environments to be mounted. This station is used for measurements on weakly scattering proteins in solutions and also for colloids, polymers and other nanoscale structures. A special application supported by the beamline is the effort to establish a micro‐fluidic sample environment for structural analysis of samples that are only available in limited quantities. Overall, this work demonstrates how a cost‐effective SAXS station can be constructed on a multipurpose beamline.  相似文献   

19.
We report the observation of large surface‐enhanced Raman scattering (SERS) (106) for 4‐tert‐butylpyridine molecules adsorbed on a silver electrode surface in an electrochemical cell with electrode potential set at − 0.5 V. A decrease in electrode potential to − 0.3 V was accompanied by a decrease in relative intensities of the vibrational modes. However, there were no changes in vibrational wavenumbers. Comparison of both normal solution Raman and SERS spectra shows very large enhancement of the intensities of a1, a2, and b2 modes at laser excitation of 488 nm. Enhancement of the non‐totally symmetric modes indicates the presence of charge transfer as a contributor to the enhancement. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Advances in resonant inelastic X‐ray scattering (RIXS) have come in lockstep with improvements in energy resolution. Currently, the best energy resolution at the Ir L3‐edge stands at ~25 meV, which is achieved using a diced Si(844) spherical crystal analyzer. However, spherical analyzers are limited by their intrinsic reflection width. A novel analyzer system using multiple flat crystals provides a promising way to overcome this limitation. For the present design, an energy resolution at or below 10 meV was selected. Recognizing that the angular acceptance of flat crystals is severely limited, a collimating element is essential to achieve the necessary solid‐angle acceptance. For this purpose, a laterally graded, parabolic, multilayer Montel mirror was designed for use at the Ir L3‐absorption edge. It provides an acceptance larger than 10 mrad, collimating the reflected X‐ray beam to smaller than 100 µrad, in both vertical and horizontal directions. The performance of this mirror was studied at beamline 27‐ID at the Advanced Photon Source. X‐rays from a diamond (111) monochromator illuminated a scattering source of diameter 5 µm, generating an incident beam on the mirror with a well determined divergence of 40 mrad. A flat Si(111) crystal after the mirror served as the divergence analyzer. From X‐ray measurements, ray‐tracing simulations and optical metrology results, it was established that the Montel mirror satisfied the specifications of angular acceptance and collimation quality necessary for a high‐resolution RIXS multi‐crystal analyzer system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号