首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
NaYF4:Yb3+, Er3+ nanoparticles were successfully prepared by a polyol process using diethyleneglycol (DEG) as solvent. After being functionalized with SiO2–NH2 layer, these NaYF4:Yb3+, Er3+ nanoparticles can conjugate with activated avidin molecules (activated by the oxidation of the oligosaccharide chain). The as-formed NaYF4:Yb3+, Er3+ nanoparticles, NaYF4:Yb3+, Er3+ nanoparticles functionalized with amino groups, avidin conjugated amino-functionalized NaYF4:Yb3+, Er3+ nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM), Fourier transform infrared (FT-IR), UV/Vis absorption spectra, and up-conversion luminescence spectra, respectively. The biofunctionalization of the NaYF4:Yb3+, Er3+ nanoparticles has less effect on their luminescence properties, i.e., they still show the up-conversion emission (from Er3+, with 4S3/2 → 4I15/2 at ~540 nm and 4F9/2 → 4I15/2 at ~653 nm), indicative of the great potential for these NaYF4:Yb3+, Er3+ nanoparticles to be used as fluorescence probes for biological system.  相似文献   

2.
A transparent Er3+–Tm3+–Yb3+ tri-doped oxyfluoride glass ceramics containing LiYF4 nanocrystals were prepared. Under 980 nm laser diode (LD) pumping, intensive red, green and blue upconversion (UC) was obtained. The blue, green, and red UC radiations correspond to the transitions 1G43H6 of Tm3+, 2H11/2/4S3/24I15/2, and 4F9/24I15/2 of Er3+ ions, respectively. This is similar to that in Tm3+–Yb3+ and/or Er3+–Yb3+ co-doped glass ceramics. However, the blue UC radiations of the Er3+–Yb3+ co-doped glass ceramics is two-photon process due to cooperative energy transfer. The UC mechanisms were proposed based on spectral, kinetic, and pump power dependence analyses.  相似文献   

3.
以EDTA为络合剂,用水热法合成了Er3+,Tm3+和Yb3+共掺杂的NaYF4纳米晶。XRD和TEM的结果表明:粒径约为30 nm,属于六方晶系。在980 nm半导体激光器激发下,研究了不同Er3+离子掺杂浓度对Tm3+和Er3+离子上转换发光性能的影响,光强与泵浦功率的双对数曲线表明,474,525,539,650 nm的发射均属于双光子过程,408 nm的发射属于三光子过程。讨论了样品的协作敏化和声子辅助共振能量传递的上转换发光机制。  相似文献   

4.
Photoluminescence properties of Gd2O3: Er3+, Yb3+ upconversion inverse opal photonic crystals were investigated. The photoluminescence spectra of the inverse opal show strong dependence on upconversion emission intensity and the corresponding photonic band-gaps of the inverse opal. Significant suppression of the green or red upconversion emission was observed if the photonic band-gap overlaps with the Er3+ ions emission band. The color purity of the red or green emission was improved in the inverse opal by the suppression of green or red UC emission. We believe that the present work will be valuable for not only the foundational study of upconversion emission modification but also new optical devices in upconversion lighting and display.  相似文献   

5.
The phenomenon of frequency upconversion (UC) is observed in Er3+:Yb3+:SrAl2O4 powders prepared by combustion synthesis. Strong UC emission at the green (bands peaked at 521, 538, 547, and 562 nm) and weak UC emission at the red (bands peaked at 659 and 682 nm) corresponding to 4f–4f transitions of Er3+ were observed when the samples were irradiated with near-infrared laser excitation at ~980 nm. Saturation of UC emission is observed for concentrations of 1.5 wt.% of Er3+ and 1.5 wt.% of Yb3+. The green-to-red intensity ratio, on the other hand, increases linearly with Er3+ concentration (Er3+ concentration varying from 0.5 to 1.5 wt.%) while keeping Yb3+ concentration fixed (at 1.5 wt.%). The green UC decay time was measured and Er3+–Er3+ interaction was suggested as a possible mechanism to explain the luminescence quenching effect observed.  相似文献   

6.
BaYF5:Yb3+/Er3+ upconversion (UC) luminescence submicrospheres have been synthesized by the hydrothermal synthesis method. The samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), scanning probe microscope (SPM), transmission electron microscope (TEM), laser diffraction particle analyzer (LDPA) and UC emission spectra. The as-prepared highly crystalline BaYF5:Yb3+/Er3+ submicrospheres are of uniform size depending on different reaction temperatures and reaction times. It is found that the usage of fluoride source NaBF4 plays the crucial key in the formation of submicrosphere. Under the 980 nm excitation, the UC emission transitions for 4F9/24I15/2 (red), 2H11/2, 4S3/24I15/2 (green) in the BaYF5:Yb3+/Er3+ submicrospheres came from two-, two-, and two-photon UC processes, respectively. Further, the effects of Yb3+ ion concentration, size and surface of as-prepared submicrospheres, and pumping power on the UC luminescence properties of BaYF5:Yb3+/Er3+ have also been discussed.  相似文献   

7.
Er3+/Yb3+/Li+-tridoped BaTiO3 nanocrystals were prepared by a sol-gel method to improve the upconversion (UC) luminescence of rare-earth doped BaTiO3 nanoparticles. Effects of Li+ ion on the UC emission properties of the Er3+/Yb3+/Li+-tridoped BaTiO3 nanocrystals were investigated. The results indicated that tridoping with Li+ ion enhanced the visible green and red UC emissions of Er3+/Yb3+-codoped BaTiO3 nanocrystals under the excitation of a 976 nm laser diode. X-ray diffraction and decay time of the UC luminescence were studied to explain the reasons of the enhancement of UC emission intensity. X-ray diffraction results gave evidence that tridoping with Li+ ion decreased the local symmetry of crystal field around Er3+, which increased the intra-4f transitions of Er3+ ion. Moreover, lifetimes in the intermediate 4 S3/2 and 4I11/2 (Er) states were enhanced by Li+ ion incorporation in the lattice. Therefore, it can be concluded that Li+ ion in rare-earth doped nanocrystals is effective in enhancing the UC emission intensity.  相似文献   

8.
Nd3+, Tm3+ and Yb3+ co-doped NaYF4 upconversion (UC) material was synthesized by the hydrothermal method. The structure of the sample was characterized by the X-ray diffraction, and its UC luminescence properties were investigated in detail. Under the 980 nm semiconductor laser excitation, its UC spectra exhibited distinct emission peaks at 451 nm, 475 nm and 646 nm respectively. On the basis of the comparison of UC spectra between NaYF4:Nd3+,Tm3+,Yb3+ and NaYF4:Tm3+,Yb3+, it was indicated that the existence of Nd3+ ion enhanced the blue emission intensity. The law of luminescence intensity versus pump power proved that the blue emission at 475 nm, and the red emission at 646 nm were the two-photon processes, while the blue emission at 451 nm was a three-photon process.  相似文献   

9.
Color controllable Er3+/Yb3+‐codoped La2MoO6 upconverting nanocrystals are successfully synthesized via a facile sol‐gel method. Under the irradiation of 980 nm light, the entire samples exhibit dazzling upconversion (UC) emissions arising from the intra‐4f transitions of Er3+ ions and the UC emission intensity is strongly dependent on the Yb3+ ion concentration. Moreover, by controlling the Yb3+ ion concentration, the emission color is changed from green to yellow and finally to red as a result of the energy back transfer from Er3+ to Yb3+ ions, which is further verified by the theoretically discussion based on the steady‐state rate expressions. The optical thermometric properties of the prepared nanocrystals based on the (2H11/2,4S3/2) thermally coupled levels of Er3+ ions are systematically studied by analyzing the temperature‐dependent green UC emission spectra in the range of 303–663 K. The maximum sensor sensitivity of resultant nanocrystals is determined to be 0.0083 K−1 at 510 K. Furthermore, the emitting color of the synthesized nanocrystals relies on the temperature. In addition, the heating effect induced by the excitation pump power is also investigated and the host lattice temperature is enhanced from 319 to 404 K with raising the pump power from 159 to 757 mW.  相似文献   

10.
An innovative upconversion (UC) emissions route of Er3+ by Yb3+–Mn2+ dimer sensitizing in Er3+–Mn2+:Yb3Al5O12 (YbAG) nanocrystals is reported here, which resulted in the selective enhancement of green UC emission and suppression of red UC emission by a 976 nm laser diode excitation. By codoping of Mn2+, the green UC emission intensity increased about 260 times, while the red UC emission intensity decreased about 20 times than that of Er3+:YbAG nanocrystals. It indicates that the green enhancement and red suppression arise from the high excited state energy transfer with |2F7/2, 4T1g> (Yb3+–Mn2+ dimer) to the 4F7/2 (Er3+), which partly decreases the nonradiative processes happened in the lower levels of Er3+. The proposed sensitizing route here may constitute a promising step to realize high-efficient UC emissions of rare-earth ions doped oxides and significantly extend their scope of applications.  相似文献   

11.
NaYF4:Yb3+, Er3+ nanoparticles were successfully prepared by a polyol process using diethyleneglycol (DEG) as solvent. These NaYF4:Yb3+, Er3+ nanoparticles can be coated with mesoporous silica using nonionic triblock copolymer EO20PO70EO20 (P 123) as structure-directing agent and other materials. The composites can load ibuprofen and release the drug in the phosphate buffer solution (PBS). The composites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), nitrogen absorption/desorption isotherms, fluorescence spectra, and UV/Vis absorption spectra, respectively. The composites have the mesoporous structure. In addition, the composites emit red fluorescence (from Er3+) under 980 nm near infrared laser excitation, which can be used as fluorescent probes in the drug-delivery system.  相似文献   

12.
In this paper, NaYF4 nanocrystals doped with Yb3+ and Er3+ were synthesized in a medium containing polyethylene glycol and citric acid. This nanocrystal presents up-converting green and red emission bands which were simultaneously observed under the excitation of a 980 infrared diode laser. Mainly, the green to red ratio (GRR) of the up-conversion emission of the hexagonal NaYF4 nanocrystals doped with Yb3+ and Er3+ can be finely tuned by changing the content of citric acid to be nearly an arithmetic progression, i.e. 6/4, 5/4, 4/4, and 3/4. The further analysis revealed that citric acid plays a key role in improving the surface crystallinity of NaYF4 nanocrystals doped with Yb3+ and Er3+, to which the achievement of fine controlling on GRR is ascribed.  相似文献   

13.
用高温熔融法制备了系列Er3+/Yb3+共掺,Ho3+/Yb3+共掺,和Er3+/Yb3+/Ho3+三掺碲酸盐玻璃,在975nm激光抽运下三种掺杂玻璃中都出现了较强的绿光和红光上转换.研究了Yb3+离子对Er3+和Ho3+离子上转换发光强度的影响以及Yb3+→Er关键词: 3+/Yb3+/Ho3+共掺')" href="#">Er3+/Yb3+/Ho3+共掺 碲酸盐玻璃 光谱性质 上转换  相似文献   

14.
郭琳娜  王育华 《物理学报》2011,60(2):27803-027803
采用化学共沉淀法制备了系列Y1.98-2xYb2x Er0.02SiO5(0.00≤x≤0.15)以及Y1.736Yb0.24Er0.02Tm0.004SiO5上转换发光材料,比较了室温下Y1.98-2xYb2x Er0.02 SiO5 (x=0.00,0.08)样品在400—1600 nm范围内的吸收光谱,测量了所有样品在976 nm OPO激光器激发下的上转换发射光谱,以及Er3+离子4S3/2(4F9/2)→4I15/2,Tm3+离子1G43H6荧光衰减曲线和不同激发功率下的上转换蓝光发射强度,从而分析讨论了Er3+,Tm3+在Y2SiO5中的上转换发光机理.研究结果表明:在1250 ℃相对较低的温度下合成了X2型单斜晶系Y2SiO5 ∶Ln3+(Ln3+=Er3+,Yb3+,Tm3+),Yb3+的敏化显著增强了样品在976 nm附近的吸收能力,并大幅度加宽了该处的吸收带.分析上转换发射光谱发现:上转换绿光和红光强度都随着Yb3+浓度的增加先增强后减弱,但红光的猝灭浓度较高,归因于Er3+→Yb3+反向能量传递ETU4和Yb3+→Er3+正向能量传递ETU3过程的发生;上转换蓝光发射是三光子吸收过程,是通过Yb3+,Tm3+之间三次声子辅助的能量转移方式实现的. 关键词: 上转换 共沉淀 2SiO5∶Er3+')" href="#">Y2SiO5∶Er3+ 3+')" href="#">Yb3+ 3+')" href="#">Tm3+  相似文献   

15.
The efficiency of upconversion fluorescence for Er3+ and Yb3+ codoped into NaYF4 powder crystals is investigated. The dependence of Er3+ green (540 nm) and red (660 nm) upconversion fluorescence intensities on laser excitation intensity and the ratio of the green and red fluorescence intensities respectively under 355‐nm and 936‐nm excitations have been measured and analyzed in terms of radiative and nonradiative relaxation mechanisms. It is shown that the intensity of both the green and red upconversion fluorescence bands is affected at high pumping intensities by a low‐lying state acting as a bottleneck, with the red fluorescence less affected than the green. In addition to two‐photon, two‐step excitation and energy transfer processes, nonlinear optical coupling mechanisms of avalanche processes appear responsible for reducing the bottleneck saturation of the red upconversion fluorescence.  相似文献   

16.
Hexagonal β-NaYF4 co-doped with Yb3+ and Er3+ is directly synthesized under mild conditions using a hydrothermal method.The variation of the ratio of Ln3+ to F-and ethylenediaminetetraacetic acid(EDTA) causes the shape of the microcrystal to change from microplate to microcolumn.The NaYF4 powder is mixed with polydimethylsiloxane(PDMS) to create an up-converter for thin film amorphous silicon solar cells so as to evaluate the effectiveness of the synthesized material as an up-converter.In order to overcome the difficulty in measuring the effectiveness of up-conversion material,a new method of using near infrared illumination to measure the short circuit current densities of solar cells both with and without up-converters is developed.An up-converter with pure hexagonal NaYF4:Yb3+/Er3+ microcrystal produces a high current output.Emission intensity data obtained by photoluminescence suggest that pure hexagonal NaYF4:Yb3+/Er3+ microcrystals are more efficient than nanocrystals when used as up-converting phosphors.  相似文献   

17.
We report the generation of multi-wavelength visible light through amplified spontaneous emission (ASE) in Er3+-doped and Er3+/Yb3+-doped germanosilicate single-mode optical fiber pumped by a Nd:YLF laser at 1313nm. In the Er3+-doped fiber, the intense multi-wavelength blue emission hnes around 463-510nm corre-spond to transitions born 2G7/2 etc. excited states to the metastable 4I13/2 state, and their pumping mechanists is aecomphshed by a stepwise four-photon absorption. Some emission hnes in this wavelength region are attributed to the three-wave sum-frequency process of 1313 and 1530nm (corresponds to 4I13/2 -4I15/2). The intense green emission hnes at 525 and 540 nm are also observed in the Er3+-doped fiber. In the Er3+/Yb3+-doped fiber the blue and green lines are very weak compared with those in the Er3+-doped fiber.  相似文献   

18.
Spectroscopic properties of YPO4 nanoparticles doped with Yb3+, Tm3+, and Er3+ ions have been studied in detail. These multiemitting materials are promising not only for photonic or electronic use but especially for anticounterfeiting applications. The nanopowders are synthesized by the facile coprecipitation method with annealing in the air atmosphere at 1000 °C. The structural and morphological studies reveal pure tetragonal nanocrystallites with an average size of 20–30 nm. Most interestingly, under NIR excitation, the samples exhibit intense upconversion (UC) luminescence where the color can be tuned by changing the laser source, switching the excitation wavelengths between 800, 975, 1208, and 1532 nm, double-wavelength excitation, and by changing laser power density. As a result, a very high color shift, being the result of intensity changes in the emission bands of Er3+ (green and red) and Tm3+ (blue and red) is obtained. The luminescence lifetimes, temporal evolution, and the pump power dependences are also measured to propose the mechanisms responsible for the observed UC emission.  相似文献   

19.
Yb3+/Er3+ co-doped Gd6MoO12 and Yb3+/Er3+/Li+ tri-doped Gd6MoO12 phosphors were prepared by adjusting the annealing temperature via the high temperature solid-state method. Under the excitation of 980 nm semiconductor, the upconversion luminescence properties were investigated and discussed. In the experimental process, we get the optimum Yb3+ concentration and the concentration quench effect will happen while the concentration extends the given region. According to the Yb3+ concentration quenching effects, the critical distance between Yb3+ ions had been calculated. The measured UC luminescence exhibited a strong red emission near 660 nm and green emission at 530 nm and 550 nm, which are due to the transitions of Er3+(4F9/2, 2H11/2, 4S3/2)  Er3+(4I15/2). Then the effect of excitation power density in different regions on the upconversion mechanisms was investigated and the calculated results demonstrate that the green and red upconversion is a two-photon process. A possible mechanism was discussed. After Li+ ions mixing, the upconversion emission enhanced largely, and the optimum Li+ concentration was obtained while fixed the Yb3+ and Er3+ on the above optimum concentration. This enhancement owns to the decrease of the local symmetry around Er3+ after Li+ ions doping into the system. This result indicates that Li+ is a promising candidate for improving luminescence in some case.  相似文献   

20.
The ZrO2:Er3+ codoped with Yb3+ phosphor powders have been prepared by the urea combustion route. Formation of the compounds ZrO2:Er3+ and ZrO2:Er3+, Yb3+ was confirmed by XRD. The frequency upconversion emissions in the green and red regions upon excitation with a CW diode laser at ~978 nm are reported. Codoping with Yb3+ enhances the emission intensities of the triply ionized erbium in the green and red spectral regions by about ~130 and ~820 times respectively. The emission properties of the ZrO2:Er3+ phosphor powders are discussed on the basis of excited state absorption, energy transfer, and cross-relaxation energy transfer mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号