首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A dendritic amphiphilic block copolymer H40‐poly(d,l ‐lactide)‐block‐d‐α‐tocopheryl polyethylene glycol 1000 succinate (H40‐PLA‐b‐TPGS) is synthesized, which is then employed to develop a system of nanoparticles (NPs) loaded with docetaxel (DTX) as a model drug for cancer treatment due to its higher drug‐loading content and drug encapsulation efficiency, smaller particle size, faster drug release, and higher cellular uptake in comparison to the linear PLA polymer NPs and PLA‐b‐TPGS copolymer NPs. The drug‐loaded NPs are prepared by a modified nanoprecipitation method and characterized in terms of size and size distribution, surface morphology, drug release profile, and physical state of DTX. Cellular uptake of coumarin 6‐loaded NPs by MCF‐7 cancer cells is determined by flow cytometry and confocal laser scanning microscopy. The antitumor efficacy of the drug‐loaded NPs is investigated in vitro by MTT assay and in vivo by xenograft tumor model. The 72 h IC50 of the drug formulated in the PLA, PLA‐b‐TPGS, and H40‐PLA‐b‐TPGS NPs is found to be, 1.5 ± 0.3, 0.9 ± 0.1, and 0.15 ± 0.06 μg mL?1, which are 7.3, 12.2, and 73.3‐fold effective than 11.0 ± 1.2 μg mL?1 for Taxotere, respectively. Such advantages are further confirmed by the measurement of the tumor size and weight.  相似文献   

2.
A novelty approach to self-assembling stereocomplex micelles by enantiomeric PLA–PEG block copolymers as a drug delivery carrier was described. The particles were encapsulated by enantiomeric PLA–PEG stereocomplex to form nanoscale micelles different from the microspheres or the single micelles by PLLA or PDLA in the reported literatures. First, the block copolymers of enantiomeric poly(l-lactide)–poly(ethylene–glycol) (PLLA–PEG) and poly(D-lactide)–poly(ethylene–glycol) (PDLA–PEG) were synthesized by the ring-opening polymerization of l-lactide and d-lactide in the presence of monomethoxy PEG, respectively. Second, the stereocomplex block copolymer micelles were obtained by the self-assembly of the equimolar mixtures of enantiomeric PLA–PEG copolymers in water. These micelles possessed partially the crystallized hydrophobic cores with the critical micelle concentrations (cmc) in the range of 0.8–4.8 mg/l and the mean hydrodynamic diameters ranging from 40 to 120 nm. The micelle sizes and cmc values obviously depended on the hydrophobic block PLA content in the copolymer. Compared with the single PLLA–PEG or PDLA–PEG micelles, the cmc values of the stereocomplex micelles became lower and the sizes of the stereocomplex micelles formed smaller. And lastly, the stereocomplex micelles encapsulated with rifampin were tested for the controlled release application. The rifampin loading capacity and encapsulation efficiency by the stereocomplex micelles were higher than those by the single polymer micelles, respectively. The drug release time in vitro was depending on the composites of the block copolymers and also could be controlled by the polymer molecular weight and the morphology of the polymer micelles.  相似文献   

3.
Amphiphilic block copolymers are well established as building blocks for the preparation of micellar drug carriers. The functional polymer micelles possess several advantages, such as high drug efficiency, targeted delivery, and minimized cytotoxicity. The synthesis of block copolymers using nano-structured templates has emerged as a useful and versatile approach for preparing drug carriers. Here, we report the synthesis of a smart polymeric compound of a diblock PLA-Lys-b-PEG copolymer containing doxorubicin. We have synthesized functionalized diblock copolymers, with lysinol, poly(lactide) and monomethoxy poly(ethylene glycol) via thermal ring-opening polymerization and a subsequent six-step substitution reaction. A variety of spectroscopic methods were employed here to verify the product of our synthesis. 1H-Nuclear magnetic resonance and Fourier transform infrared studies validated the expected synthesis of copolymers. Doxorubicin is chemically loaded into micelles, and the ex vitro release can be evaluated either in weak acidic or in SBF solution by UV–vis spectroscopy. Dynamic light scattering, thermo gravimetric analysis, and size exclusion chromatography have also been used.  相似文献   

4.
The polymerization of trimethylene carbonate (TMC) in the presence of HCl · Et2O via activated monomer mechanism was performed to synthesize linear and star-shaped block copolymers composed of polyethyleneglycol (PEG) and poly(trimethylene carbonate) (PTMC). The obtained PTMCs had molecular weights close to the theoretical values calculated from the TMC to PEG molar ratios and exibited monomodal GPC curves. We successfully prepared PEG and PTMC linear and star-shaped block copolymers by activated monomer mechanism. The characterization for formation of micelle of block copolymers in an aqueous phase was carried out by using NMR, dynamic light scattering (DLS), AFM and fluorescence techniques (FL). The block copolymers gave micelles with a critical micelle concentration (CMC) ranging 1.88 × 10−2–3.09 × 10−3 mg/mL depended on the molecular shape of block copolymers. The diameters of micelles, measured by DLS, were 100–250 nm. Most micelles exhibited a spherical shape in AFM.  相似文献   

5.
A novel methodology for incorporating gentamicin into macromolecular complexes with anionic homo- and block copolymers via cooperative electrostatic interactions is described. Block copolymers of poly(ethylene oxide-b-sodium acrylate) (PEO-b-PAA +Na) or poly(ethylene oxide-b-sodium methacrylate) (PEO-b-PMA +Na) were blended with PAA Na+ and complexed with the polycationic antibiotic gentamicin. Gentamicin nanoplexes made with PEO-b-PMA +Na/PAA +Na (PMPG) and analogous nanoplexes with PEO-b-PAA +Na/PAA +Na (PAPG) had mean intensity average diameters of 120 and 90 nm, zeta potentials of −17 and −11 mv, and incorporated 26% and 23% by weight of gentamicin, respectively. Gentamicin release rates at physiological pH from nanoplexes were relatively slow. PAPG and PMPG as drug delivery systems for treating murine salmonellosis at doses similar to the free gentamicin experiments resulted in reduced numbers of viable bacteria in the liver and spleen. Polymeric nanoplexes developed by this methodology can potentially improve targeting of intracellular pathogens.  相似文献   

6.
A facile method using polystyrene‐b‐poly(4‐vinyl pyridine) (PS‐b‐P4VP) micelles is demonstrated to synthesize N/FeN4‐doped hollow carbon nanospheres (N/FeN4‐CHNS) with high electrocatalytic activity for oxygen reduction reactions (ORRs). Uniform spherical micelles with PS core and P4VP shell are prepared by exposing PS‐b‐P4VP in a mixture of ethanol/tetrahydrofuran. Pyridinic N in shell cooperates with Fe3+ to induce an in situ polymerization of pyrrole. Tuning molecular composition of PS‐b‐P4VP can form hollow carbon spheres with controlled size down to sub‐100 nm that remains challenge using traditional hard template strategies. N/FeN4‐CHNS possesses a series of desirable properties as electrode materials, including easy fabrication, high reproducibility, large surface area, and highly accessible porous surface. This electrocatalyst exhibits excellent ORR activity (onset potential of 0.976 V vs reversible hydrogen electrode (RHE) and half‐wave potential of 0.852 V vs RHE), higher than that of commercial Pt/C (20 wt%) in an alkaline media, and shows a good activity in an acidic media as well. In addition to its higher stability and methanol tolerance than Pt/C in both alkaline and acidic electrolytes, highly competitive single cell performance is achieved in a proton exchange membrane fuel cell. This work provides a general approach to preparing functionalized small hollow nanospheres based on self‐assembly of block copolymers.  相似文献   

7.
Several polysilane block copolymers have been prepared by the newly developed method, anionic polymerization of masked disilenes. Especially amphiphilic block copolymers of poly(1,1-dimethyl-2,2-dihexyldisilene) and poly methacrylate are focused. Poly(1,1-dimethyl-2,2-dihexyldisilene)-b-poly(2-hydroxyethyl methacrylate) (PMHS-b-PHEMA) is the first example of the amphiphilic polysilane copolymer that can form micelles in polar solvents. Poly(1,1-dimethyl-2,2-dihexyldisilene)-b-poly(methacrylic acid) (PMHS-b-PMAA) is more polar than (PMHS-b-PHEMA), soluble in water to form micelles. The cross-linking reaction of (PMHS-b-PMAA) with 1,10-diaza-4,7-dioxadecane and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride afforded the first shell cross-linked micelles (SCM) of polysilane. In addition to interesting properties, SCM is indicated to be able to form hollow sphere particles (hollow shell cross-linked micelles, HSCM) by a photochemical process. Reversible encapsulation of guest molecules by SCM and HSCM is demonstrated. Finally, SCM can be used as the template for the synthesis of metal nanoparticles, which may be used as catalysts.  相似文献   

8.
A novel poly(l-aspartic) derivative (PAL-DPPE) containing polylactide and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) segments has been successfully synthesized. The chemical structures of the copolymers were confirmed by Fourier-transform infrared spectroscopy (FTIR), NMR (1H NMR, 13C NMR, 31P NMR), and thermogravimetric analysis (TGA). Fluorescence spectroscopy, dynamic light scattering (DLS), and transmission electron microscopy (TEM) confirmed the formation of micelles of the PAL-DPPE copolymers. In order to estimate the feasibility as novel drug carriers, an anti-tumor model drug doxorubicin (DOX) was incorporated into polymeric micelles by double emulsion and nanoprecipitation method. The DOX-loaded micelle size, size distribution, and encapsulation efficiency (EE) were influenced by the feed weight ratio of the copolymer to DOX. In addition, in vitro release experiments of the DOX-loaded PAL-DPPE micelles exhibited that faster release in pH 5.0 than their release in pH 7.4 buffer. The poly(l-aspartic) derivative copolymer was proved to be an available carrier for the preparation of micelles for anti-tumor drug delivery.  相似文献   

9.
Abstract

Luminescent particles of Anionic Polymeric Acryclic Acid Lead (Pb(PAA)2) which containing eosine(HFInBr4), Eosine nanomicroball of anionic polypropylene acid lead contained luminophores (short for E.N.PAA.L.C.L), were synthesized by a sol‐gel method, using anionic polymeric acryclic acid sodium (PAANa) as the precursor and Pb2+ as the precipitant. NH4Ac‐HAc can react with the Pb2+ in E.N.PAA.L.C.L, causing it to decompose into aqueous soluble components. E.N.PAA.L.C.L‐ NH4Ac‐HAc can emit strong and stable solid substrate room temperature phosphorescence (SS‐RTP) on filter paper, and bismuth, mercury or iodine can cause a decrease in phosphorescence intensity. Based on the facts above, a new method for the determination of trace bismuth by an SS‐RTP quenching method was established. The linear range of this method was 0.01–0.20(pg spot?1) (4.0×10?12 g ml?1) of Bi3+, with a detection limit (LD) of 0.0016 pg spot?1, and the regression equation of the working curve was ΔIp=61.01+237.8 mBi3+ (pg spot?1), r=0.9992. This method was applied to the determination of trace bismuth in human hair and well water samples with satisfactory results. The mechanism of SS‐RTP emission was also discussed.  相似文献   

10.
《Solid State Ionics》2006,177(11-12):1083-1090
Poly(vinyl phosphate-b-styrene) (poly(VPP-b-St)) block copolymers were prepared via consecutive telomerization of vinyl acetate (VAc), atom transfer radical polymerization (ATRP) with styrene, saponification, and phosphorylation with phosphorus oxychloride. The resulting block copolymers were characterized by FT-IR and pH titration. Then, the block copolymers were blended with poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) to prepare direct methanol fuel cell (DMFC) membrane. The performance of poly(VPP-b-St)/PPO blend membranes was measured in terms of proton conductivity, methanol permeability, thermal and hydrolytic stability. The proton conductivities were in the range of 10 4 to 10 2 S/cm (60 °C, RH = 95%); the methanol permeabilities were in the range of 4.14 × 10 8 to 9.62 × 10 8 cm2/s (25 °C), and quite lower than that of Nafion® 117. Also, the thermal stability of the blend membranes was characterized by TGA, and was stable up to 400 °C; the blend membranes had better hydrolytic stability.  相似文献   

11.
A functionalization of iron oxide nanoparticles (NPs) of different diameters by the amphiphilic invertible polymer, (PEG600‐alt‐PTHF650)k (PEG and PTHF stand for poly(ethylene glycol) and poly(tetrahydrofuran), respectively), leads to different NP/polymer architectures for dye/drug uptake and release, as is reported here for the first time. It is demonstrated that 18.6 ± 1.4 and 11.9 ± 0.6 nm NPs are individually coated by this polymer, while 5.9 ± 0.6 nm NPs form nanoparticle clusters (NPCs) which could be isolated by either ultracentrifugation or magnetic separation. This phenomenon is most likely due to the character of the (PEG600‐alt‐PTHF650)k macromolecule with alternating hydrophilic and hydrophobic fragments and its dimensions sufficient to cause NP clustering. Utilizing Rhodamine B base (RBB) and doxorubicin (DOX), the data on uptake upon mixing and further release via inversion into octanol (mimicking the penetration of the cell biomembrane) are presented. The magnetic NPCs display enhanced uptake and release of both RBB and DOX most likely due to the higher retained polymer amount. The NPCs also display exceptional magnetic resonance imaging properties. This and the high uptake/release efficiency of the NPCs combined with easy magnetic separation make them promising for theranostic probes for magnetically targeted drug delivery.  相似文献   

12.
通过L-谷氨酸苄酯和三光气反应制备谷氨酸苄酯的N-羧酸酐,以聚羟乙谷氨酸酰胺为大分子引发剂,投入不同配比的单体/引发剂(A/I),共聚得到两亲性嵌段共聚物聚羟乙谷氨酰胺-聚谷氨酸苄酯(PHEG-PBLG);通过核磁共振技术分析表征该合成聚肽的结构组成、分子量范围及螺旋结构;通过体外酶解实验研究了共聚物的降解情况. 研究结果表明:该合成聚肽化合物为两亲性嵌段聚合物:当聚合物中亲水链段PHEG分子量为9000,A/I为75∶1, 100∶1, 150∶1, 200∶1时,相应的共聚物的分子量分别为:1.27×104,1.75×104, 1.9×104, 3.60×104;该合成聚肽含有α-螺旋结构, 随着TFA的加入,该聚肽的结构由α-旋构象转化为随机盘绕构象.  相似文献   

13.
We have found very slow crystallization in thin films of cylinder-forming poly(isoprene-b -ethyleneoxide) (P(I-b -EO)) diblock copolymers with PEO being the minority block. The film was crystallized at room temperature after melting at 62 °C . Imaging methods were combined with X-ray reflectometry and grazing-incidence small-angle X-ray scattering and diffraction. Initially, hexagonally packed, amorphous PEO cylinders lie in the film plane. After 148 days, crystallized, finger-like terraces were observed over the entire film surface. The terrace height is 20% higher than the repeat distance in the as-prepared film. Thus, at the film surface, the cylinders have been destroyed by crystalline lamellae lying in the film plane. The PEO chain stems are perpendicular to the substrate surface and are once-folded and fully interdigitated. The substrate-near layers still consist of the hexagonally packed, amorphous PEO cylinders within the PI matrix.  相似文献   

14.
The strategy to efficiently deliver antitumor drugs via nanocarriers to targeted tumor sites and achieve controllable drug release is attracting great research interest in cancer therapy. In this study, a novel type of disulfide‐bonded poly(vinylcaprolactam) (PVCL)‐based nanogels with tunable volume phase transition temperature and excellent redox‐labile property are prepared. The nanogels are hydrophilic and swell at 37 °C, whereas under hyperthermia (e.g., 41 °C), the nanogels undergo sharp hydrophilic/hydrophobic transition and volume collapse, which enhances the cellular uptake and drug release. The incorporation of disulfide bond linkers endows the nanogels with an excellent disassembly property in reducing environments, which greatly facilitates drug release in tumor cells. Nanogels loaded with doxorubicin (DOX) (DOX‐NGs) (DOX‐NGs) are stable in physiological conditions with low drug leakage (15% in 48 h), while burst release of DOX (92% in 12 h) can be achieved in the presence of 10 × 10?3 m glutathione and under hyperthermia. The DOX‐NGs possess improved cell killing efficiency under hyperthermia (IC50 decreased from 1.58 μg mL?1 under normothermia to 0.5 μg mL?1). Further, the DOX‐NGs show a pronounced tumor inhibition rate of 46.6% compared with free DOX, demonstrating that this new dual‐responsive nanogels have great potential as drug delivery carriers for cancer therapy in vivo.  相似文献   

15.
Abstract

Semicrystalline block copolymers provide us with a fascinating model for studying the kinetics of crystallization. We performed the simultaneous measurement of small‐ (SAXS) and wide‐angle (WAXS) x‐ray scattering (SWAXS) with differential scanning calorimetry (DSC), or SWAXS with small‐angle light scattering (H v‐SALS). The specimen used was polyethylene‐b‐poly(ethylene propylene) (PE‐b‐PEP) with the molecular weight of 44,200. The PE block has the melting point (T m) at 108°C. We observed the time evolution of crystallization in the lamellar microdomains of PE‐b‐PEP after a temperature drop from 180°C (?T m) to a variety of temperatures slightly below T m. The exothermic signal was observed by DSC right after the temperature drop, while the four‐leaf‐clover pattern of H v‐SALS and the SAXS peaks due to the lamellar microdomains were observed several minutes after the temperature equilibration. The WAXS peaks of (110) and (200) reflection were almost simultaneously detected with the H v‐SALS and the SAXS peaks at crystallization temperature of 100°C. With the crystallization temperature closer to T m, the WAXS crystalline signals showed up with longer time lag after the H v‐SALS and the SAXS peaks began to appear. Interestingly, these phenomena are interpreted as that long‐range order of density fluctuation up to the order of micrometers was generated prior to the formation of crystals with partially ordered phase rather than the instantaneous crystalline nucleation.  相似文献   

16.
《Composite Interfaces》2013,20(8):701-714
To investigate the influence of the grafting density and the molecular structure of block copolymers on the interfacial assembly behavior and interfacial shear strength, macromolecular coupling agents, hydroxyl-terminated poly(n-butyl acrylate-b-styrene) (HO-P(BA-b-S)) were synthesized by atom transfer radical polymerization, and then chemically anchored on the glass fiber surfaces to form a well-defined monolayer. The phase separation and 'hemispherical' domain morphologies of diblock copolymer brushes at the polystyrene/glass fiber interface were observed. The interfacial assembly morphology differs with changes in the grafting density of diblock copolymers. When the grafting density is greatest, the highest height difference of the hemispherical domain and the largest surface roughness are achieved, as well as the best interface shear strength. It was also found that the copolymer brush with a PBA block of the polymerization degree (Xn) about 77 is the optimal option for the interfacial adhesion of PS/GF composites. Thus, the grafting density and molecular structure of diblock copolymers determines the interfacial assembly behavior of copolymer brushes, and therefore the interfacial shear strength.  相似文献   

17.
The self-organization of the double hydrophilic triblock copolymer poly(ethylene oxide)-b-poly(2-vinylpyridine)-b-poly(ethylene oxide), PEO-b-P2VP-b-PEO, was investigated in dilute aqueous solution under several experimental conditions using turbidimetry, as well as static and dynamic light scattering. As a result of the temperature-sensitive properties of the end PEO blocks and the p H-responsive properties of the middle P2VP block, the formation of large star-like micellar nanostructures is observed at high p H, while at low p H, but in the presence of salt and at high temperature, flower-like micelles are formed. Moreover, the viscosimetric and dynamic light scattering studies at low p H revealed that micelle-like nanostructures are formed upon mixing the triblock copolymer with poly(acrylic acid), PAA, due to hydrogen bonding interpolymer complexation.  相似文献   

18.
Eight fluorinated nanoparticles (NPs) are synthesized, loaded with doxorubicin (DOX), and evaluated as theranostic delivery platforms to breast cancer cells. The multifunctional NPs are formed by self‐assembly of either linear or star‐shaped amphiphilic block copolymers, with fluorinated segments incorporated in the hydrophilic corona of the carrier. The sizes of the NPs confirm that small circular NPs are formed. The release kinetics data of the particles reveals clear hydrophobic core dependence, with longer sustained release from particles with larger hydrophobic cores, suggesting that the DOX release from these carriers can be tailored. Viability assays and flow cytometry evaluation of the ratios of apoptosis/necrosis indicate that the materials are non‐toxic to breast cancer cells before DOX loading; however, they are very efficient, similar to free DOX, at killing cancer cells after drug encapsulation. Both flow cytometry and confocal microscopy confirm the cellular uptake of NPs and DOX‐NPs into breast cancer cells, and in vitro 19F‐MRI measurement shows that the fluorinated NPs have strong imaging signals, qualifying them as a potential in vivo contrast agent for 19F‐MRI.  相似文献   

19.
Owing to its higher concentration in cancer cells than that in the corresponding normal cells, glutathione (GSH) provides an effective and flexible mechanism to design drug delivery systems. Here a novel GSH‐responsive mesoporous silica nanoparticle (MSN) is reported for controlled drug release. In this system, manganese dioxide (MnO2) nanostructure, formed by the reduction of KMnO4 on the surface of carboxyl‐functionalized MSN can block the pores (MSN@MnO2). By a redox reaction, the capped MnO2 nanostructure can dissociate into Mn2+ in the presence of GSH molecules. The blocked pores are then uncapped, which result in the release of the entrapped drugs. As a proof‐of‐concept, doxorubicin (DOX) as model drug is loaded into MSN@MnO2. DOX‐loaded MSN@MnO2 shows an obvious drug release in 10 × 10?3 m GSH, while no release is observed in the absence of GSH. In vitro studies using human hepatocellular liver carcinoma cell line (HepG2) prove that the DOX‐loaded MSN@MnO2 can entry into HepG2 cells and efficiently release the loaded DOX, leading to higher cytotoxicity than to that of human normal liver cells (L02). It is believed that further developments of this GSH‐responsive drug delivery system will lead to a new generation of nanodevices for intracellular controlled delivery.  相似文献   

20.
Pulmonary administration offers excellent advantages over conventional drug delivery routes, including increasing therapeutics bioavailability, and avoiding long‐term safety issues. Formulations of nano‐in‐micro dry powders for lung delivery are engineered using (S)‐ibuprofen as a model drug. These biodegradable formulations comprise nanoparticles of drug‐loaded POxylated polyurea dendrimers coated with chitosan using supercritical‐fluid‐assisted spray drying. The formulations are characterized in terms of morphology, particle‐size distribution, in vitro aerodynamic particle pulmonary distribution, and glutathione‐S‐transferase assay. It is demonstrated that ibuprofen‐loaded nanoparticles can be successfully incorporated into microspheres with adequate aerodynamic properties, mass median aerodynamic diameter (1.86–3.83 μm), and fine particle fraction (28%–45%), for deposition into the deep lung. The (S)‐ibuprofen dry powder formulations show enhanced solubility, high swelling behavior and a sustained drug release at physiologic pH. Also, POxylated polyureas decrease the (S)‐ibuprofen toxic effect on cancer cellular growth. The 3‐(4,5‐dimethylthiazol‐2‐yl)‐5‐(3‐carboxymethoxyphenyl)‐2‐(4‐sulfophenyl)‐2H‐tetrazolium (MTS) assays show no significant cytotoxicity on the metabolic activity of human lung adenocarcinoma ephithelial (A549) cell line for the lowest concentration (1 × 10?3 m ), even for longer periods of contact with the cells (up to 120 h), and in the normal human dermal fibroblasts cell line the toxic effect is also reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号