首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Hartree–Fock calculations on 20 carbon atom chains of β‐phase poly(vinylidene fluoride) (PVDF) were done as a function of bending strain. The results can be modeled in terms of a classical energy versus strain curve resulting in a pseudomodulus (310 GPa) comparable to the Young's modulus calculated for stretching along carbon atom chain (199 GPa). The model also shows that the minimum energy state of a single chain of the polymer is not linear in the all‐trans geometry and that a significant strain energy is stored in natural thin films. This suggests that energy can be captured from bending motions in β‐PVDF. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1493–1495, 2011  相似文献   

2.
Understanding the deformational and failure behaviors of thermoplastic semicrystalline polymers is crucial due to the practical usages in various engineering applications. Taking isotactic polypropylene (iPP) as a semicrystalline polymer model system, atomistically informed coarse‐grained (CG) molecular dynamics (MD) simulations are employed to investigate the creep behavior of iPP. The simulations reveal that there exists a threshold stress of about 20.0 MPa, above which the maximum strain of iPP within the simulation time span increases dramatically. From the strain‐time analysis, it is observed that the iPP exhibits an initial elastic deformation stage and a subsequent plastic stage at lower stress levels, while a three‐stage creep behavior including a third fracture stage is observed at higher stress levels. Specifically, at lower stress levels, the bonded energy increases continuously as the chains stretch steadily, while the nonbonded energy shows an initial increase followed by a steady decrease due to the interchain sliding. At higher stress levels, both bonded and nonbonded energies change dramatically at the third stage, resulting from accelerated chain stretching, unfolding, sliding, and breaking. This study provides physical insight into the creep behavior of iPP at a fundamental molecular level and highlights the important role of microstructural evolution of chains in the deformation of semicrystalline polymer materials. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1779–1791  相似文献   

3.
A coarse‐grained model for an elastic shell grafted with polymer chains is investigated by molecular dynamics methods. With increasing the number of grafted polymer chains (GPCs), it is found that the conformation of the shell undergoes from expansion to collapse and back to the expansion. By varying the density of the GPCs, the phase transition of the elastic shell can be successfully controlled at moderate bending energy of the shell and at moderate binding energy between the shell and GPCs. Furthermore, the self‐assembly structures of the GPCs are also affected by the elastic shell in certain conditions. In the case of a few GPCs on the shell, the chains tend to be adsorbed on the shell surface unfolded at high value of bending energy. However, when the bending energy is small, the chains can be folded several times easily. This may be an important step toward a deeper understanding of how to control the microstructure in the production of biocomposites. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

4.
A route from naturally occurring myo‐inositol to hydroxyl‐bearing polyurethanes has been developed. The diol prepared from the bis‐acetalization of myo‐inositol with 1,1‐dimethoxycyclohexane was reacted with a rigid diisocyanate, 1,3‐bis(isocyanatomethyl)cyclohexane to afford the corresponding polyurethane, of which glass transition temperature (Tg) was quite high as 192 °C. The polyurethane contains side chains inherited from the acetal moieties of the diol monomer and was treated with trifluoroacetic acid to hydrolyze the acetal moieties and afford the target polyurethane functionalized with hydroxyl groups. The presence of many hydroxyl groups in the side chains, which can form hydrogen bonds with each other, resulted in a high Tg, 186 °C. In addition, the hydroxyl groups were reacted with isocyanates to achieve further side‐chain modifications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1358–1364  相似文献   

5.
We describe the development of chain‐growth condensation polymerization for the synthesis of well‐defined π‐conjugated polymers via a new polymerization mechanism, catalyst‐transfer polymerization. We first studied the condensation polymerization of Grignard‐type hexylthiophene monomer with a Ni catalyst as a part of our research on chain‐growth condensation polymerization, and found that this polymerization also proceeded in a chain‐growth polymerization manner. However, the polymerization mechanism involving the Ni catalyst was different from that of previous chain‐growth condensation polymerizations based on substituent effects; the Ni catalyst catalyzed the coupling reaction of the monomer with the polymer, followed by the transfer of Ni(0) to the terminal C? Br bond of the elongated molecule. This catalyst‐transfer condensation polymerization is generally applicable for the synthesis of polythiophene with an etheric side chain and poly(p‐pheneylene), as well as for the synthesis of polyfluorene via the Pd‐catalyzed Suzuki–Miyaura coupling reaction. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 753–765, 2008  相似文献   

6.
The kinetics of aqueous free‐radical graft polymerization of 1‐vinyl‐2‐pyrrolidone onto silica activated with vinyltrimethoxysilane was studied with a mechanistic polymerization model and experimental data for a temperature range of 70–90 °C. The polymerization was initiated with hydrogen peroxide with initial monomer concentrations ranging from 10 to 40 vol %. The kinetic model, which incorporates the hybrid cage–complex initiation mechanism, describes the experimental polymerization data for which the kinetic order, with respect to the monomer concentration, varies from 1 to . Surface chain growth occurs by both monomer addition and homopolymer grafting, although the latter contribution to the total polymer graft yield is less significant. Increasing the initial monomer concentration enhances both surface polymer density and average grafted chain length. Increasing reaction temperature, however, produces a denser surface layer of shorter polymer chains. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 26–42, 2002  相似文献   

7.
A new di‐tert‐butyl acrylate (diTBA) monomer for controlled radical polymerization is reported. This monomer complements the classical use of tert‐butyl acrylate (TBA) for synthesis of poly(acrylic acid) by increasing the density of carboxylic acids per repeat unit, while also increasing the flexibility of the carboxylic acid side‐chains. The monomer is well behaved under Cu(II)‐mediated photoinduced controlled radical polymerization and delivers polymers with excellent chain‐end fidelity at high monomer conversions. Importantly, this new diTBA monomer readily copolymerizes with TBA to further the potential for applications in areas such as dispersing agents and adsorbents. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 801–807  相似文献   

8.
In single‐molecule force spectroscopy (SMFS), many studies have focused on the elasticity and conformation of polymer chains, but little attention has been devoted to the dynamic properties of single polymer chains. In this study, we measured the energy dissipation and elastic properties of single polystyrene (PS) chains in toluene, methanol, and N,N‐dimethylformamide using a homemade piezo‐control and data acquisition system externally coupled to a commercial atomic force microscope (AFM), which provided more accurate information regarding the dynamic properties of the PS chains. We quantitatively measured the chain length‐dependent changes in the stiffness and viscosity of a single chain using a phenomenological model consistent with the theory of viscoelasticity for polymer chains in dilute solution. The effective viscosity of a polymer chain can be determined using the Kirkwood model, which is independent of the intrinsic viscosity of the solvent and dependent on the interaction between the polymer and solvent. The results indicated that the viscosity of a single PS chain is dominated by the interaction between the polymer and solvent. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1736–1743  相似文献   

9.
10.
The length of pendant side chains in charged, random, comb‐shaped polymers dictates the nature of their short‐range ordering. Random copolymers, and terpolymer, of 4‐vinylpyridine (4VP), styrene, and isoprene were synthesized and subsequently fully quaternized with 1‐alkylbromides having varying number of carbons on the alkyl group ranging from 2 to 8. Evaluation by wide angle X‐ray scattering revealed that dipole–dipole attraction facilitates the formation of ionomer cluster morphology in samples with two carbons on the pendant side chain, whereas for samples with four or more carbons on the pendant side chains, side‐chain sterics was dominant resulting in periodic backbone spacing. Copolymers with isoprene, having flexible backbones, favor the formation of ionomer cluster morphology while styrene copolymers having rigid backbones disfavor the formation of ionomer clusters. An “in‐line” dipole model was developed to predict the separation distance at which both ionomer cluster and backbone–backbone morphologies could coexist. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1325–1336  相似文献   

11.
Hyperbranched vinyl polymers with high degrees of branching (DBs) up to 0.43 functionalized with numerous pendent allene groups have been successfully prepared via reversible addition fragmentation chain transfer polymerization of a state‐of‐art allene‐derived asymmetrical divinyl monomer, allenemethyl methacrylate (AMMA). The gelation did not occur until high monomer conversions (above 90%), as a result of the optimized reactivity difference between the two vinyl groups in AMMA. The branched structure was confirmed by a combination of a triple‐detection size exclusion chromatography (light scattering, refractive index, and viscosity detectors) and detailed 1H NMR analyses. A two‐step mechanism is proposed for the evolution of branching according to the dependence of molecular weight and DB on monomer conversion. Controlled radical polymerization proceeds until moderate conversions, mainly producing linear polymers. Subsequent initiation and propagation on the polymerizable allene side chains as well as the coupling of macromolecular chains generate numerous branches at moderate‐to‐high monomer conversions, dramatically increasing the molecular weight of the polymer. AMMA was also explored as a new branching agent to construct poly(methyl methacrylate)‐type hyperbranched polymers by its copolymerization with methyl methacrylate. The DB can be effectively tuned by the amount of AMMA, showing a linear increase trend. The pendent allene groups in the side chains of the copolymers were further functionalized by epoxidation and thiol‐ene chemistry in satisfactory yields. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2959–2969  相似文献   

12.
We report synthesis of the modified fluorene polymers tethered to the heterogeneous types of the fluorescent dyes at the cardo carbon for obtaining the dual‐emissive solid materials. A series of the alternating fluorene copolymers modified with pyrene or 9,10‐diphenylanthracene and BODIPY at the cardo carbon based on the red‐emissive donor–acceptor structure were prepared, and their characteristics were examined. From the measurements of the optical properties, the energy transfer efficiencies were evaluated. In summary, variable energy transfer efficiencies were observed between the side chains and from the side chain to the main chain. It was indicated that the energy transfer efficiencies were strongly depended on the types of the energy donor and the detection conditions as such in the solution or film. Furthermore, it was found that the cardo fluorene units can contribute to the suppression of the energy transfer in the condensed state. Finally, the dual‐emissive polymers were obtained in the film states. This is the first example, to the best of our knowledge, not only to offer systematic information on the energy transfer between the dye molecules and the polymer main‐chains via the cardo structure but also to demonstrate the polymer‐based optical materials with the dual‐emission properties. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2026–2035  相似文献   

13.
Ring‐opening metathesis polymerization (ROMP) of thioether‐derived oxanorbornene imide ( M1 ) and its copolymerization with various cycloolefin comonomers such as cyclopentene ( M2 ), cyclopent‐3‐en‐1‐ol ( M3 ), cycloheptene ( M4 ), and cyclooctene ( M5 ) using Hoveyda–Grubbs second generation catalyst has been investigated. Polymerizations were performed at two different temperatures (0 and 25 °C) and the obtained functional poly(olefin)s were characterized by nuclear magnetic resonance 1H and 13C (NMR), and infrared spectroscopy as well as size exclusion chromatography, differential scanning calorimetry, and thermogravimetric analysis analyses. Additionally, the dependence of the polymer composition on the reaction temperature and monomer feed was studied with time‐dependent 1H NMR experiments. Copolymerization of M1 with a five‐membered cycloolefin monomer M2 showed relatively low ROMP reactivity irrespective of the reaction conditions in comparison to M3 , M4 , and M5 monomers. In general, the degree of monomer incorporation into poly(olefin)s were determined in the order of M5 > M3 > M4 > M2 , and that sheds light on the effect of cycloolefin ring strain energies in the ruthenium‐alkylidene initiated ROMP. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1741–1747  相似文献   

14.
We have newly designed an original bifunctional monomer (PAVE) containing both a phenylacetylene (PA) group and a vinyl ether (VE) group, which is expected to be a key material for the synthesis of brush‐shaped polymers consisting of a poly(phenylacetylene) (polyPA) main chain and polyVE side chains. Actually, we have demonstrated the selective chemical transformation of the VE moiety of PAVE to an initiator site for the living cationic polymerization of isobutyl vinyl ether (IBVE), and then succeeded in the controlled synthesis of a novel PA‐end‐capped polyIBVE macromonomer. Moreover, using this macromonomer, the first synthesis of a brush‐shaped polyPA bearing polyVE side chains was achieved via Rh complex‐mediated homopolymerization. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2800–2805  相似文献   

15.
2‐Hydroxyethyl acrylamide was successfully polymerized via single‐electron transfer initiation on the silicon surface and propagation through the reversible addition–fragmentation chain transfer (SET‐RAFT) polymerization at ambient temperature for different polymerization times. This work is the first time application of the surface‐initiated SET‐RAFT mechanism to afford the preparation of well‐defined poly(2‐hydroxyethyl acrylamide) [poly(HEAAm)] brushes at ambient temperature. The polymerization was well controlled and produced poly(HEAAm) brushes on the silicon surface with a well‐defined target molecular weight. The controlled nature of the polymerization was further demonstrated in the presence of sulfur atoms at the chain ends in X‐ray photoelectron spectroscopy experiments. The grafting density (σ, chains nm?2) and the average distance between grafting points (D, nm) were found to be 0.42 chains nm?2 and 1.74 nm, respectively, indicating moderate grafting density. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 1140–1146  相似文献   

16.
Side‐chain liquid‐crystalline‐b‐amorphous copolymers combine the thermotropic ordering of liquid crystals (LCs) with the physics of block copolymer phase segregation. In our earlier experiments, we observed that block copolymer order–order and order–disorder transitions could be induced by LC transitions. Here we report the development of a free‐energy model to understand the interplay between LC ordering and block copolymer morphology in an incompressible melt. The model considers the interaction between LC moieties, the stretching of amorphous chains from curved interfaces, interfacial surface contributions, and elastic deformation of the nematic phase. The LC block is modeled with Wang and Warner's theory, in which nematogens interact through mean‐field potentials, and the LC backbone is modeled as a wormlike chain. Free energy is estimated for various morphologies: homogeneous, lamellar, cylinder micelle, and spherical micelle. Phase diagrams were constructed by iteration over temperature and composition ranges. The resulting composition diagrams are highly asymmetric, and a variety of first‐order transitions are predicted to occur at the LC clearing temperature. Qualitatively, nematic deformation energies destabilize curved morphologies, especially when the LC block is in the center of the block copolymer micelle. The thermodynamics of diblocks with laterally attached, side‐on mesogens are also explored. Discussion focuses on how well the model captures experimental phenomena and how the predicted phase boundaries are affected by changes in polymer architecture. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2671–2691, 2001  相似文献   

17.
We studied the structure of heterogenous DNA in the native state. There are two different regimes in the sample‐to‐sample fluctuations of the free energy in the native state, which can be interpreted via the concept of local free energy of base pairs. In the first low‐temperature frozen regime, local free energies are random and there are large sample‐to‐sample fluctuations for short DNAs. In the high‐temperature molten regime, the weakly bounded base pairs are opened and do not give random contribution to the free energy of native DNA. As a result, sample‐to‐sample fluctuations are suppressed in the molten regime. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

18.
Thermoreversible gelation of polymer chains bearing hydrogen‐bonding functional groups is studied by off‐lattice Monte Carlo simulation with semiflexible bead‐and‐spring model chains. To see the formation of zipper‐like sequential crosslink junctions (domino effect), we introduce stabilization energy ?Δε between the nearest neighboring hydrogen‐bonded beads along a chain in addition to the ordinary pairwise hydrogen‐bond energy ?ε. It is found that the condition / = 2 is fulfilled at the sol/gel transition point, where is the average zipper length, θ the zipper content per chain, and n the total number of beads on a chain. It is also shown that, at low temperature, zipper growth dominates the nucleation of new zippers, and as a result, there is another transition from a three‐dimensional network to a pairwisely bound state (network/pair transition). © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3331–3336, 2005  相似文献   

19.
Graft copolymers consisting of amorphous main chain, poly(methyl methacrylate) (PMMA), or poly(methyl acrylate) (PMAc), and crystalline side chains, poly(ethylene glycol) (PEG), have been prepared by copolymerization of PEG macromonomers with methyl methacrylate or methyl acrylate (MMAx or MACx, respectively). Because of the compatibility of PMMA/PEG and PMAc/PEG, from small‐angle X‐ray scattering results, the main and side chains in graft copolymers were suggested to be homogeneous in the molten state. Differential scanning calorimetry (DSC) cooling scans revealed that PEG side chains for graft copolymers with large PEG fractions were crystallized when the sample was cooled, with a cooling rate of 10 °C/min. The spherulite pattern observed by a polarized optical microscope suggested the growth of PEG crystalline lamellae. Crystallization of PEG in MMAx was more restrained than in MACx. From these results, we have concluded that the crystallization behavior of the grafted side chains is strongly influenced by the glass transition of a homogeneously molten sample as well as dilution of the crystallizable chains. Domain spacings for isothermally crystallized graft copolymers were described by interdigitating chain packing in crystalline–amorphous lamellar structure. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 79–86, 2005  相似文献   

20.
The condensation polymerization in a methanol solution of four different esterified aldaric acids (D ‐glucaric, meso‐xylaric, meso‐galactaric, and D ‐mannaric) with even‐numbered alkylenediamines (C2–C12) gave polyhydroxypolyamides whose water solubilities and melting points were compared. In general, an increase in the alkylenediamine monomer length resulted in decreased polyamide water solubility. Differences in the polymer melting points and water solubilities were linked primarily to conformational differences of the monomer aldaryl units; for example, polyamides from meso‐galactaric acid with an extended zigzag conformation aldaryl monomer unit had higher melting points and lower water solubilities than those from D ‐glucaric and meso‐xylaric acids. The latter acid monomer units tended toward bent conformations that served to diminish intermolecular attractive forces between polymer chains, affecting polymer solubility and melting characteristics. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 594–603, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号