首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
In this research, submicron and carboxyl‐functionalized magnetic latex particles were elaborated by using seeded emulsion polymerization technique in presence of oil‐in‐water (o/w) magnetic emulsion as seed. The polymerization conditions were optimized in order to get well‐defined latex particles with magnetic core and polymer shell bearing carboxylic (–COOH) functionality. Starting from (o/w) magnetic emulsion as seed, synthesis process was performed by copolymerization of styrene (St) monomer with the cross‐linker divinylbenzene (DVB) in presence of 4,4′‐azobis(4‐cyanopentanoic acid) (ACPA) as a carboxyl‐bearing initiator. The prepared magnetic latex particles were first characterized in terms of particle size, chemical composition, morphology, magnetic properties, magnetic content, and colloidal stability using various techniques, e.g. particle size analyzer using dynamic light scattering (DLS) technique, Fourier transform infrared, transmission electron microscopy, vibrating sample magnetometer, thermogravimetric analysis, and zeta potential measurements as a function of pH of the dispersion media, respectively. The prepared magnetic latex particles were then used as second seed for further functionalization with methacrylic acid (MAA) in order to enhance carboxylic groups on the magnetic particle's surface. The results showed that final magnetic latex particles possessed spherical morphology with core‐shell structure and enriched carboxylic acid functionality. More importantly, they exhibited superparamagnetism with high magnetic content (58.42 wt%) and high colloidal stability, which considered as the main requirements for their application in the biomedical diagnostic domains. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
Micrometer magnetic hybrid particles are of great interest in biomedical field, and various morphologies have been prepared via encapsulation processes. Regarding submicron, only few processes have been investigated and the most recent one leading to highly magnetic submicron magnetic hybrid particles is based on oil in water magnetic emulsion (MES) transformation. The encapsulation of magnetic iron oxide nanoparticles forming oil in water MES was investigated using different styrene/cross‐linker divinylbenzene volume ratio in the presence of potassium persulfate initiator. The encapsulation performed in this work is basically conducted by using well‐defined oil in water MES as a seed in radical emulsion polymerization. The chemical composition, morphology, iron oxide content, magnetic properties, electrokinetic properties, particle size, and size distribution of the prepared magnetic hybrid particles were examined using various techniques. The desired perfect magnetic core and polymer shell morphology were successfully obtained, and the final magnetic hybrid particles are superparamagnetic in nature and exhibit high iron oxide content (64 wt %). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Polystyrene‐core–silica‐shell hybrid particles were synthesized by combining the self‐assembly of nanoparticles and the polymer with a silica coating strategy. The core–shell hybrid particles are composed of gold‐nanoparticle‐decorated polystyrene (PS‐AuNP) colloids as the core and silica particles as the shell. PS‐AuNP colloids were generated by the self‐assembly of the PS‐grafted AuNPs. The silica coating improved the thermal stability and dispersibility of the AuNPs. By removing the “free” PS of the core, hollow particles with a hydrophobic cage having a AuNP corona and an inert silica shell were obtained. Also, Fe3O4 nanoparticles were encapsulated in the core, which resulted in magnetic core–shell hybrid particles by the same strategy. These particles have potential applications in biomolecular separation and high‐temperature catalysis and as nanoreactors.  相似文献   

4.
In this study, the poly(N‐isopropylacrylamide‐methylacrylate acid)/Fe3O4/poly(N‐isopropylacrylamide‐methylacrylate acid) (poly(NIPAAm‐MAA)/Fe3O4/poly(NIPAAm‐MAA)) two‐shell magnetic composite hollow latex particles were synthesized by four steps. The poly(methyl methacrylate‐co‐methylacrylate acid) (poly(MMA‐MAA)) copolymer latex particles were synthesized first. Then, the second step was to polymerize NIPAAm, MAA, and crosslinking agent in the presence of poly(MMA‐MAA) latex particles to form the linear poly(MMA‐MAA)/crosslinking poly(NIPAAm‐MAA) core–shell latex particles. Then, the core–shell latex particles were heated in the presence of NH4OH to dissolve the linear poly(MMA‐MAA) core to form the poly(NIPAAm‐MAA) hollow latex particles. In the third step, the Fe3O4 nanoparticles were generated in the presence of poly(NIPAAm‐MAA) hollow polymer latex particles and formed the poly(NIPAAm‐MAA)/Fe3O4 magnetic composite hollow latex particles. The fourth step was to synthesize poly(NIPAAm‐MAA) in the presence of poly(NIPAAm‐MAA)/Fe3O4 latex particles to form the poly(NIPAAm‐MAA)/Fe3O4/poly(NIPAAm‐MAA) two‐shell magnetic composite hollow latex particles. The effect of various variables such as reactant concentration, monomer ratio, and pH value on the morphology and volume‐phase transition temperature of two‐shell magnetic composite hollow latex particles was studied. Moreover, the latex particles were used as carriers to load with caffeine, and the caffeine‐loading characteristics and caffeine release rate of latex particles were also studied. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2880–2891  相似文献   

5.
The oxidative polymerization of p‐phenylenediamine with silver nitrate by using various oxidant/monomer mole ratios in aqueous solutions of both acetic and nitric acid was studied experimentally and computationally. The produced micro/nanostructured conducting poly(p‐phenylenediamine)–silver composites, reaching the conductivities >104 S/cm, were characterized by conductivity and density measurements, gel permeation chromatography, transmission electron microscopy, UV–visible, FTIR, and Raman spectroscopies. The highest conductivity was 31,700 S/cm for poly(p‐phenylenediamine) base–silver (81.4 wt % Ag). The unexpected increase of conductivity after deprotonation of polymer component is discussed on the basis of interfacial electrical barriers and their removal. Theoretical study of the mechanism of p‐phenylenediamine oxidation has been based on the AM1 semi‐empirical quantum chemical computations of the heat of formation of the reaction intermediates, taking into account the influence of pH and solvation effects. Quantum chemical predictions of molecular structure of poly(p‐phenylenediamine) were correlated with spectroscopic findings. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
A series of highly water-soluble organo-silica nanoparticles, ranging from 2 to 10 nm in diameter, were synthesized by the cohydrolysis and copolycondensation reactions. ω-methoxy(polyethyleneoxy)propyltrimethoxysilane (PEG6-9) and hydroxymethyltriethoxysilane (HMTEOS) mixtures were catalyzed by sodium hydroxide in the presence of surfactant benzethonium chloride (BTC) with various ratios of PEG6-9/HMTEOS at room temperature. The synthesized organo-silica nanoparticles possess a core–shell structure with a core of organo-silica resulting from HMTEOS and a monolayer shell of PEG6-9. The chemo-physical characteristics of the particles were studied by gel permeation chromatography (GPC), Fourier transform infrared (FTIR) spectroscopy, 29Si nuclear magnetic resonance (NMR), dynamic light scattering (DLS), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). The molecular weight and particle size of the particles increased with increasing HMTEOS molar ratios. The richest HMTEOS composition for the water-soluble particles was found to be HMTEOS:PEG6-9 = 80:20, where the particles had a 6 nm diameter core and a 0.8 nm thick shell. We propose that these water-soluble organo-silica nanoparticles will be suitable for biomedical applications.  相似文献   

7.
Magnetic poly(methyl methacrylate) (PMMA)/poly(methyl methacrylate‐co‐methacrylic acid) [P(MMA–MAA)] composite polymer latices were synthesized by two‐stage soapless emulsion polymerization in the presence of magnetite (Fe3O4) ferrofluids. Different types and concentrations of fatty acids were reacted with the Fe3O4 particles, which were prepared by the coprecipitation of Fe(II) and Fe(III) salts to obtain stable Fe3O4 ferrofluids. The Fe3O4/polymer particles were monodisperse, and the composite polymer particle size was approximately 100 nm. The morphology of the magnetic composite polymer latex particles was a core–shell structure. The core was PMMA encapsulating Fe3O4 particles, and the shell was the P(MMA–MAA) copolymer. The carboxylic acid functional groups (COOH) of methacrylic acid (MAA) were mostly distributed on the surface of the composite polymer latex particles. Antibodies (anti‐human immunoglobulin G) were then chemically bound with COOH groups onto the surface of the magnetic core–shell composite latices through the medium of carbodiimide to form the antibody‐coated magnetic latices (magnetic immunolatices). The MAA shell composition of the composite latex could be adjusted to control the number of COOH groups and thus the number of antibody molecules on the magnetic composite latex particles. With a magnetic sorting device, the magnetic immunolatices derived from the magnetic PMMA/P(MMA–MAA) core–shell composite polymer latex performed well in cell‐separation experiments based on the antigen–antibody reaction. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1342–1356, 2005  相似文献   

8.
《先进技术聚合物》2018,29(1):470-480
The flavonoid‐based macromolecule initiator was prepared for the first time by the transesterification reaction of naringin with 2‐bromoisobutyryl bromide. In accordance with the “grafting from” methodology, a naringin‐based copolymer brush with a polar naringenine‐7‐rhamnosidoglucoside core and an amphiphilic poly(methyl methacrylate)‐block‐poly(N‐isopropylacrylamide) (PMMA‐b‐PNIPAM) side chains was synthesized for the first time via a simplified electrochemically mediated ATRP (seATRP), utilizing only 40 ppm of catalytic complex. The rate of the polymerizations was controlled by applying optimal potential or current values during preparative electrolysis to prevent the possibility of intermolecular coupling of the growing polymer brushes. Naturally derived polymer brushes showed narrow molecular weight distributions (Đ = 1.06−1.08). 1H NMR spectral results confirm the formation of citrus‐based polymer brushes. These new naringin‐based polymer materials may find biomedical applications as thermo‐sensitive drug delivery systems, membranes, and biologically active thin films in tissue engineering.  相似文献   

9.
The amphiphilic poly(AM‐co‐SA)‐ITXH macrophotoinitiator was synthesized by precipitation photopolymerization under UV irradiation with isopropylthioxanthone (ITX) as free radical photoinitiator. A novel method has been developed to prepare amphiphilic core‐shell polymer nanospheres via photopolymerization of methyl methacrylate (MMA) in aqueous media, with amphiphilic copolymer macrophotoinitiator poly(AM‐co‐SA)‐ITXH. During polymerization, the amphiphilic macroradicals underwent in situ self‐assembly to form polymeric micelles, which promoted the emulsion polymerization of the monomer. Thus, amphiphilic core‐shell nanospheres ranging from 70 to 140 nm in diameter were produced in the absence of surfactant. The conversion of the monomer, number average molecular weights (Mn), and particle size were found to be highly dependent on the macrophotoinitiator and monomer concentration. The macrophotoinitiator and amphiphilic particles were characterized by FTIR, UV‐vis, 1H NMR, TEM, DSC, and contact angle measurements. The results showed the particles had well‐defined amphiphilic core‐shell structure. This new method is scientifically and technologically significant because it provides a commercially viable route to a wide variety of novel amphiphilic core‐shell nanospheres. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 936–942, 2010  相似文献   

10.
A new method for the selective extraction of p‐aminosalicylic acid from aqueous and urine samples has been developed using magnetic molecularly imprinted polymer nanoparticles before determination by high‐performance liquid chromatography. The Fe3O4 nanoparticles were first prepared through the chemical coprecipitation of Fe2+ and Fe3+ and then coated with a vinyl shell. Subsequently, a layer of molecularly imprinted polymers was grafted onto the vinyl‐modified magnetic nanoparticles by precipitation polymerization. FTIR spectroscopy, scanning electron microscopy, vibrating sample magnetometry, and thermogravimetric analysis were applied to characterize the sorbent properties. Moreover, the predominant parameters affecting the magnetic solid phase extraction such as sample pH, sorption and elution times, the amount of sorbent, and composition and volume of eluent were investigated thoroughly. The maximum sorption capacity of the imprinted polymer toward p‐aminosalicylic acid was 70.9 mg/g, which is 4.5 times higher than that of the magnetic nonimprinted polymer. The magnetic molecularly imprinted polymer nanoparticles were applied for the selective extraction of p‐aminosalicylic acid from aqueous and urine samples and satisfactory results were achieved. The results illustrate that magnetic molecularly imprinted polymer nanoparticles have a great potential in the extraction of p‐aminosalicylic acid from environmental and biological matrices.  相似文献   

11.
New polymer latexes bearing saccharide moieties on the particle surface were synthesized by using a water‐soluble sugar monomer, such as 1‐deoxy‐1‐methacryl‐amido‐D ‐glucitol, (MAG). All the latexes were prepared by a two‐stage emulsion polymerization technique. In the first step, the core was prepared with butyl acrylate (BA) and styrene (St). In the second step, the seed latex was polymerized with ethyl acrylate (EA) and MAG. The influence of a bifunctional monomer such as allyl methacrylate (ALMA), introduced at various concentrations, on the final latexes morphologies and properties was investigated. It was found that the latex particles exhibit a core‐shell structure. The mass balance of MAG showed that the main part of the sugar moiety is on the shell layer. The molecular properties, such as structure, composition, and molecular weight, were determined by elemental analysis, 1H‐ and 13CNMR spectroscopy. Colloidal (particle size and their distributions), thermal, and rheological properties were also studied. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
In this work, core/shell magnetic molecularly imprinted polymer nanoparticles were synthesized for extraction and pre‐concentration of valsartan from different samples and then it was measured with high‐performance liquid chromatography. For preparation of molecularly imprinted polymer nanoparticles, Fe3O4 nanoparticles were coated with tetraethyl orthosilicate and then functionalized with 3‐(trimethoxysilyl) propyl methacrylate. In the next step, molecularly imprinted polymer nanoparticles were synthesized under reflux and distillation conditions via polymerization of methacrylic acid, valsartan (as a template), azobisisobutyronitrile and ethylene glycol dimethacrylate as cross linking. The properties of molecularly imprinted polymer nanoparticle were investigated by FTIR spectroscopy, field emission scanning electron microscopy, and X‐ray diffraction. Box‐Behnken design with the aid of desirability function was used for optimizing the effect of variables such as the amounts of molecularly imprinted polymer nanoparticles, time of sonication, pH, and volume of methanol on the extraction percentage of valsartan. According to the obtained results, the affecting variables extraction condition were set as 10 mg of adsorbent, 16 min for sonication, pH = 5.5 and 0.6 mL methanol. The obtained linear response (r2 > 0.995) was in the range of 0.005–10 µg/mL with detection limit 0.0012 µg/mLand extraction recovery was in the range of 92–95% with standard deviation less than 6% (n = 3).  相似文献   

13.
Ultrasonically assisted in situ emulsion polymerization was used to prepare electrically conducting copolymer poly(aniline‐co‐p‐phenylenediamine) [poly(Ani‐co‐pPD)] and silica (SiO2) nancomposites. This approach can solve problems in the dispersion and stabilization of SiO2 nanoparticles in the copolymer matrix. It was found that the aggregation of SiO2 nanoparticles could be reduced under ultrasonic irradiation. Scanning transmission electron microscopy (STEM) confirmed that the resulting poly(Ani‐co‐pPD)/SiO2 nanocomposite particles were spherical in shape, in which SiO2 nanoparticles were well dispersed. The comonomer molecules were absorbed on the surface of SiO2 particles and then polymerized to form core–shell nanocomposite. The incorporation of SiO2 in the nanocomposite was supported by Fourier transform infrared spectroscopy (FT‐IR). UV‐visible spectra of the diluted colloid dispersion of nanocomposite particles were similar to those of the neat copolymer. Conductivity of nanocomposites was higher than the value obtained for the neat copolymer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
In this study, we have developed a method to assess adenosine 5?‐triphosphate by adsorptive extraction using surface adenosine 5′‐triphosphate‐imprinted polymer over polystyrene nanoparticles (412 ± 16 nm) for selective recognition/separation from urine. Molecularly imprinted polymer was synthesized by emulsion copolymerization reaction using adenosine 5′‐triphosphate as a template, functional monomers (methacrylic acid, N‐isopropyl acrylamide, and dimethylamino ethylmethacrylate) and a crosslinker, methylenebisacrylamide. The binding capacities of imprinted and non‐imprinted polymers were measured using high‐performance liquid chromatography with UV detection with a detection limit of 1.6 ± 0.02 µM of adenosine 5′‐triphosphate in the urine. High binding affinity (QMIP, 42.65 µmol/g), and high selectivity and specificity to adenosine 5′‐triphosphate compared to other competitive nucleotides including adenosine 5?‐diphosphate, adenosine 5?‐monophosphate, and analogs such as adenosine, adenine, uridine, uric acid, and creatinine were observed. The imprinting efficiency of imprinted polymer is 2.11 for urine (QMIP, 100.3 µmol/g) and 2.51 for synthetic urine (QMIP, 48.5 µmol/g). The extraction protocol was successfully applied to the direct extraction of adenosine 5′‐triphosphate from spiked human urine indicating that this synthesized molecularly imprinted polymer allowed adenosine 5′‐triphosphate to be preconcentrated while simultaneously interfering compounds were removed from the matrix. These submicron imprinted polymers over nano polystyrene spheres have a potential in the pharmaceutical industries and clinical analysis applications.  相似文献   

15.
Magnetic nanoparticles (NP) have found various important applications in nanotechnology and nanomedicine, because they can be manipulated by external magnetic field and can be functionalized on their surface. Although a variety of magnetic core shell NP are known present research focuses on new NP with better properties (reduced toxicity, high colloidal and chemical stability, wide scope of application) and more straightforward and reproducible syntheses. In this work, we report the synthesis of azido‐functionalized polypyrrole (PPy)‐based superparamagnetic core shell NP by surface initiated polymerization wherein miniemulsion technique have been applied in this field for the first time. The new NP are attractive for biomedical applications because the PPy is biocompatible, the shell can easily be functionalized by Cu‐catalyzed click‐reaction as shown by the introduction of biotin and the material exhibits superparamagnetic behavior. The surface initiated polymerization is carried out at new magnetite NP, which are stabilized by pyrrol‐containing fatty acids. Although these starting NP lack a polymer shell, they show a remarkable stability and thus have the potential for further functionalization. The magnetic NP are characterized by various methods such as FTIR, X‐ray photoelectron spectroscopy, magnetic measurements, thermal gravimetric analysis, and dynamic light scattering. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
Positively charged nanoparticles (NPs) are very interesting for biomedical and pharmaceutical applications, such as nonviral gene delivery. Here, the synthesis of SiO2 nanoparticles with a covalently grafted poly(2‐ethyl‐2‐oxazoline) (PEtOx) shell (SiO2@PEtOx) is presented. PEtOx with a degree of polymerization of 20 and 38 is synthesized via microwave supported cationic ring‐opening polymerization and subsequently end‐functionalized with a triethoxysilyl linker for subsequent grafting to silica particles with hydrodynamic radii of 7, 31, and 152 nm. The resulting SiO2@PEtOx particles are characterized by using dynamic light scattering (DLS), transmission electron microscopy (TEM, cryoTEM), and scanning electron microscopy (SEM) to determine changes in particle size. Thermal gravimetrical analysis is used to quantify the amount of polymer on the silica surface. Subsequent in situ transformation of SiO2@PEtOx particles into SiO2@P(EtOx‐stat‐EI) (poly(2‐ethyl‐2‐oxazoline‐stat‐ethylene imine) grafted silica particles) under acidic conditions inverts the surface charge from negative to positive according to ζ‐potential measurements. The P(EtOx‐stat‐EI) shell could be used for the deposition of Au NP afterward.

  相似文献   


17.
A new route to synthesize amphiphilic core–shell particles that consist of well‐defined hydrophobic polymer cores and poly(vinylamine) (PVAm) shells has been developed. The PVAm was treated with a small amount of tert‐butyl hydroperoxide to generate free radicals that subsequently initiated both graft‐ and homo‐polymerization of vinyl monomer such as n‐butyl acrylate, methyl methacrylate, and styrene. Stable particles in the range from 100 to 250 nm in diameter with very narrow size distributions (polydispersity index between 1.08 and 1.15) were produced in high yields. TEM images of the particles revealed that they had well‐defined core–shell nanostructures with thick and hairy PVAm shells. The structures of the vinyl monomer and water‐soluble polymer were found to strongly influence the formation of particles and their sizes.

  相似文献   


18.
Summary: The synthesis of core‐shell particles with a poly(ε‐caprolactone) (PCL) shell and magnetite (Fe3O4) contents of between 10 wt.‐% and 41 wt.‐% proceeds by surface‐initiated ring‐opening polymerization of ε‐caprolactone to give surface‐immobilized oligomers with between 1 400 g · mol−1 and 11 500 g · mol−1. The particles are dispersable in good solvents for the PCL shell. Magnetization experiments on the resulting superparamagnetic ferrofluids give a core‐size distribution with an average diameter, dv, of about 9.7 nm.

TEM image of Fe3O4/PCL core‐shell particles cast from CHCl3 dispersion.  相似文献   


19.
In this work, the poly(methacrylic acid‐coN‐isopropylacrylamide) thermosensitive composite hollow latex particles was synthesized by a three‐step reaction. The first step was to synthesize the poly(methyl methacrylate‐co‐methacrylic acid) (poly(MMA‐MAA)) copolymer latex particles by the method of soapless emulsion polymerization. The second step was to polymerize methacrylic acid (MAA), N‐isopropylacrylamide (NIPAAm), and N,N′‐methylenebisacrylamide in the presence of poly(MMA‐MAA) latex particles to form the linear poly(methyl methacrylate‐co‐methacrylic acid)/crosslinking poly(methacrylic acid‐coN‐isopropylacrylamide) (poly(MMA‐MAA)/poly(MAA‐NIPAAm)) core–shell latex particles. In the third step, the core–shell latex particles were heated in the presence of ammonia solution to form the crosslinking poly(MAA‐NIPAAm) thermosensitive hollow latex particles. The morphologies of poly(MMA‐MAA)/poly(MAA‐NIPAAm) core–shell latex particles and poly(MAA‐NIPAAm) hollow latex particles were observed. The influences of crosslinking agent and shell composition on the lower critical solution temperature of poly(MMA‐MAA)/poly(MAA‐NIPAAm) core–shell latex particles and poly(MAA‐NIPAAm) hollow latex particles were, respectively, studied. Besides, the poly(MAA‐NIPAAm) thermosensitive hollow latex particles were used as carriers to load with the model drug, caffeine. The effect of various variables on the amount of caffeine loading and the efficiency of caffeine release was investigated. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5203–5214  相似文献   

20.
In this study, the poly(NIPAAm–MAA)/Fe3O4 hollow latex particles were synthesized by three steps. The first step was to synthesize the poly(methyl methacrylate‐co‐methylacrylate acid) (poly(MMA‐MAA)) copolymer latex particles by the method of soapless emulsion polymerization. Following the first step, the second step was to polymerize N‐isopropylacrylamide (NIPAAm), MAA, and crosslinking agent (N,N'‐methylene‐bisacrylamide (MBA)) in the presence of poly(MMA‐MAA) latex particles to form the linear poly(MMA‐MAA)/crosslinking poly (NIPAAm‐MAA) core‐shell latex particles. After the previous processes, the core‐shell latex particles were heated in the presence of NH4OH to dissolve the linear poly(MMA‐MAA) core in order to form the poly(NIPAAm‐MAA) hollow latex particles. In the third step, Fe2+ and Fe3+ ions were introduced to bond with the ? COOH groups of MAA segments in the poly(NIPAAm‐MAA) hollow polymer latex particles. Further by a reaction with NH4OH and then Fe3O4 nanoparticles were generated in situ and the poly(NIPAAm‐MAA)/Fe3O4 magnetic composite hollow latex particles were formed. The concentrations of MAA, crosslinking agent (N,N'‐methylene bisacrylamide), and Fe3O4 nanoparticles were important factors to influence the morphology of hollow latex particles and lower critical solution temperature of poly(NIPAAm–MAA)/Fe3O4 magnetic composite hollow latex particles. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号