首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Furan‐containing benzoxazine monomers, 3‐furfuryl‐3,4‐dihydro‐2H‐1,3‐benzoxazine (P‐FBz) and bis(3‐furfuryl‐3,4‐dihydro‐2H‐1,3‐benzoxazinyl)isopropane (BPA‐FBz), were prepared using furfurylamine as a raw material. The chemical structures of P‐FBz and BPA‐FBz were characterized with FTIR, 1H NMR, elemental analysis, and mass spectrometry. Formation of furfurylamine Mannich bridge networks in the polymerizations of P‐FBz and BPA‐FBz increased the cross‐linking densities and thermal stability of the resulting polybenzoxazines. P‐FBz‐ and BPA‐FBz‐based polymers also exhibited high glass transition temperatures above 300 °C, high char yields, and low flammability with limited oxygen index values of 31. The dielectric (Dk = 3.21–3.39) and mechanical properties (high storage modulus of 3.0–3.9 GPa and low coefficient of thermal expansion of 37.7–45.4 ppm) of the P‐FBz‐ and BPA‐FBz‐based polymers were superior or comparable to other polybenzoxazines. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5267–5282, 2005  相似文献   

2.
A benzoxazine compound (FDP‐FBz), which possesses a fluorene group and two terminal furan groups, and its corresponding cross‐linked polymer (CR‐FDP‐FBz) have been prepared using 4,4′‐(9‐fluorenylidene)diphenol (FDP), furfurylamine, and formaldehyde as precursors. The chemical structure of FDP‐FBz has been characterized with Fourier‐transform infrared and 1H nuclear magnetic resonance spectroscopies. FDP‐FBz displays a melting point at about 173 °C and a processing window of 52 °C as well as good solubility in common organic solvents. As a result, FDP‐FBz can be fabricated in both molten and solution processes. Under an excitation at 365 nm, FDP‐FBz exhibits a photoluminescent (PL) emission at about 445 nm. The PL intensity of FDP‐FBz is as high as sixfolds of the intensity recorded with FDP. CR‐FDP‐FBz displays a glass transition temperature of 215 °C, a high storage modulus of 3.1 GPa, a 10% weight loss at 384 °C, and a high char yield of 56 wt % (900 °C, in nitrogen). Moreover, CR‐FDP‐FBz has a high refractive index of about 1.65 as a result of incorporating fluorene groups to its structure. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4020–4026, 2010  相似文献   

3.
As a renewable chemical, diphenolic acid (DPA) has attracted immense interest in bio-based polymer science. However, its application for polybenzoxazines is limited due to decarboxylation, that is, the release of CO2 during the curing reaction of benzoxazine. In this study, the amidation strategy of converting DPA to diphenolic amides (DPAM) was demonstrated to solve this problem while simultaneously improving the thermal properties of polybenzoxazine. DPA was amidated by separately using four amines (hexamine, cyclohexylamine, furfurylamine, and aniline), then reacted with furfurylamine and paraformaldehyde to synthesize their benzoxazine monomers. By using TGA and DMA, all amide-containing polybenzoxazines were found to exhibit excellent thermal stabilities. Among all of the benzoxazine resins, poly(DFA-fa), which was obtained from amidation with furfurylamine, exhibited the highest glass transition temperature (Tg) of 310°C and a decomposition temperature (Td10) of 406°C. Furthermore, a possible post-curing reaction mechanism was proposed to explain the outstanding thermal performance of poly(DFA-fa) resin. This study proposes an innovative strategy to solve the decarboxylation of DPA-based polymers, which is of significance for high-performance bio-based polymers.  相似文献   

4.
A fully bio‐based benzoxazine, 3‐furfuryl‐8‐methoxy‐3,4‐dihydro‐2H‐1,3‐benzoxazine (Bzf), has been prepared using guaiacol, furfurylamine, and paraformaldehyde as raw materials. Its chemical structure has been characterized by 1H and 13C NMR, FTIR, and elemental analysis. The polymerization behavior of Bzf in the presence of methyl p‐toluenesulfonate (PTSM) has been studied by FTIR and DSC, and the thermal stability of the cured resin has been evaluated by thermogravimetric analysis. It was found that PTSM is a good promoter that serves to avoid thermal decomposition of the bio‐based monomer during the curing process at high temperature. In contrast to the situation with neat Bzf, the presence of PTSM (5 mol % for Bzf) significantly improves the polymerization behaviors, including a decrease in the polymerization temperature from 240 to 174 °C, a shortening of the time required to reach the gel point on heating at 200 °C from 47 to 20 min, and an increase in the char yield of the cured resin from 53 to 62%. Moreover, these observed experimental results on the promoting effect of PTSM are interpreted in terms of several possible mechanistic schemes, which involve a catalytic effect on the dissociation of C? O bonds in both the coordination ring‐opening reaction and the rearrangement from a phenoxy structure to a phenolic structure. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

5.
In the present work, an attempt has been made to develop bio-based composites using cardanol and eugenol based benzoxazine matrices with bio-silica as well as natural fibrous materials (coir felt, kapok fabric, jute felt and rice husk) as reinforcements. The bio-composites developed were studied for different applications viz., dielectric, water repellent, oil-water separation, sound-absorption including corrosion resistance use. Among the bio-silica reinforced benzoxazine composites, 7 wt% bio-silica reinforced cardanol composites possesses the highest value of water contact angle (147°) and the lowest value of dielectric constant (2.0) than those of other bio-silica reinforced composites. Further, the cotton fabric was coated with cardanol and eugenol based polybenzoxazines separately, whose values of water contact angles are found to be 159° and 157° with oil-water separation efficiency as 96% and 95% respectively. Furthermore, the cardanol based benzoxazine was separately reinforced with jute felt, coir felt, kapok fabric and rice-husk. The corresponding sound absorption efficiency was found to increase in the following order, Neat polybenzoxazine < rice husk < coir felt < kapok fabric < jute felt. Data resulted from corrosion studies, it was noticed that the mild steel specimen coated with bio-based benzoxazine matrices and bio-silica reinforced benzoxazine composites coated specimens exhibit an excellent resistance to corrosion. Data resulted from different studies, it is suggested that the cardanol and eugenol based bio-composites can be considered as an effective materials for microelectronics insulation, water repellent, oil-water separation, sound absorption and corrosion resistant applications.  相似文献   

6.
A series of fluorene‐based benzoxazine copolymers were synthesized from the mixture of 9,9‐bis(4‐hydroxyphenyl)fluorene and bisphenol A, and 4,4′‐diaminodiphenyloxide and paraformaldehyde. And the cured polybenzoxazine films derived from these copolymers were also obtained. Fourier transform infrared spectroscopy (FTIR) and hydrogen nuclear magnetic resonances confirmed the structure of these benzoxazines. Their molecular weight was estimated by gel permeation chromatography. The curing behavior of the precursors was monitored by FTIR and differential scanning calorimetry. Dynamic mechanical analysis and thermogravimetric analysis were performed to study the thermal properties of the cured polymers. The cured polybenzoxazines exhibit excellent heat resistance with glass transition temperatures (Tg) of 286–317°C, good thermal stability along with the values of 5% weight loss temperatures (T5) over 340°C, and high char yield over 50% at 800°C. The mechanical properties of the cured polymers were also measured by bending tests. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Tannic‐acid‐based low volatile organic compound‐containing waterborne hyperbranched polyurethane was prepared. In order to improve the performance, it was modified in an aqueous medium using a glycerol‐based hyperbranched epoxy and vegetable‐oil‐based poly(amido amine) at different wt%. The combined system was cross‐linked by heating at 100°C for 45 min. Fourier transform infrared spectroscopy and swelling study were used to confirm the curing. A dose‐dependent improvement of properties was witnessed for the thermoset. Thermoset with 30 wt% epoxy showed excellent improvements in mechanical properties like tensile strength (~3.4 fold), scratch hardness (~2 fold), impact resistance (~1.3 fold), and toughness (~1.7 fold). Thermogravimetric analysis revealed enhancement of thermal properties (maximum 70°C increment of degradation temperature and 8°C increment of Tg). The modified system showed better chemical and water resistance compared with the neat polyurethane. Biodegradation study was carried out by broth culture method using Pseudomonas aeruginosa as the test organism. An adequate biodegradation was witnessed, as evidenced by weight loss profile, bacterial growth curve, and scanning electron microscope images. The work showed the way to develop environmentally benign waterborne polyurethane as a high‐performance material by incorporating a reactive modifier into the polymer network. Use of benign solvent and bio‐based materials as well as profound biodegradability justified eco‐friendliness and sustainability of the modified system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Two novel bio‐based diamines are synthesized through introduction of renewable 2,5‐furandicarboxylic acid (2,5‐FDCA), and the corresponding aromatic polyimides (PIs) are then prepared by these diamines with commercially available aromatic dianhydrides via two‐step polycondensation. The partially bio‐based PIs possess high glass transition temperatures (Tgs) in the range from 266 to 364 °C, high thermal stability of 5% weight loss temperatures (T5%s) over 420 °C in nitrogen and outstanding mechanical properties with tensile strengths of 79–138 MPa, tensile moduli of 2.5–5.4 GPa, and elongations at break of 3.0–12.3%. Some colorless PI films (PI‐1‐b and PI‐1‐c) with the transmittances at 450 nm over 85% are prepared. The overall properties of 2,5‐FDCA‐based PIs are comparable with petroleum‐based PI derived from isophthalic acid, displaying the potential for development of innovative bio‐based materials. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1058–1066  相似文献   

9.
We propose three approaches to obtain flame‐retardant benzoxazines. In the first approach, we synthesize a novel benzoxazine (dopot‐m) from a phosphorus‐containing triphenol (dopotriol), formaldehyde, and methyl amine. Dopot‐m is copolymerized with a commercial benzoxazine [6′,6‐bis(3‐phenyl‐3,4‐dihydro‐2H‐1,3‐benzoxazineyl)methane (F‐a)] or diglycidyl ether of bisphenol A (DGEBA). The thermal properties and flame retardancy of the F‐a/dopot‐m copolymers increase with the content of dopot‐m. As for the dopot‐m/DGEBA curing system, the glass‐transition temperature of the dopot‐m/DGEBA copolymer is 252 °C, which is higher than that of poly(dopot‐m). The 5% decomposition temperature of the dopot‐m/DGEBA copolymer increases from 323 to 351 °C because of the higher crosslinking density caused by the reaction of phenolic OH and epoxy. In the second approach, we incorporate the element phosphorus into benzoxazine via the curing reaction of dopotriol and F‐a. After the curing, the thermal properties of the F‐a/dopotriol copolymers are almost the same as those of neat poly(F‐a), and this implies that we can incorporate the flame‐retardant element phosphorus into the polybenzoxazine without sacrificing any thermal properties. In the third approach, we react dopo with electron‐deficient benzoxazine to incorporate the element phosphorus. After the curing, the glass‐transition temperatures of polybenzoxazines decrease slightly with the content of dopo, mainly because of the smaller crosslinking density of the resultant polybenzoxazines. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3454–3468, 2006  相似文献   

10.
Developing thermosets derived from renewable sources is of great importance. In this work, a fully bio-based benzoxazine monomer, 3,6-bis((3-(furan-2-ylmethyl)-3,4-dihydro-2H-benzo[e][1,3]oxazin-6-yl)methyl)piperazine-2,5-dione (TCDPF), is conveniently synthesized from L-tyrosine cyclic dipeptide (TCDP), furfurylamine and paraformaldehyde. The chemical structure of TCDPF is confirmed by nuclear magnetic resonance spectroscopy and Fourier transform infrared spectroscopy (FT-IR) techniques. The curing behavior of TCDPF is investigated by differential scanning calorimetry and in situ FT-IR techniques. After temperature-programmed curing, the thermomechanical property and thermal stability of the resulting TCDPF polymer (PTCDPF) are evaluated by dynamic mechanical analysis and thermogravimetric analysis techniques, respectively. It is found that PTCDPF have excellent comprehensive performance such as high glass transition temperature (Tg = 322 °C), high thermal degradation temperature (T5% = 342 °C, T10% = 395 °C in N2 atmosphere), and high char yield (CY = 51.3% at 800 °C in N2 atmosphere). The results demonstrate that L-tyrosine is a promising bio-based raw material for preparing high performance polybenzoxazines.  相似文献   

11.
A novel benzoxazine monomer containing a benzoxazole group was synthesized using a nonsolvent method and then named DAROH‐a. The structure of DAROH‐a was confirmed by FTIR, 1H NMR, elemental analysis, and mass spectrometry. The curing reaction activation energy was calculated at 140 kJ/mol. Its corresponding crosslinked polybenzoxazines, poly(DAROH‐a), displayed a higher glass transition temperature at 402 °C, a 9% weight loss at the said temperature, and a high char yield of 42 wt % (800 °C, in nitrogen). Moreover, the dielectric constants of poly(DAROH‐a) were low and changed only slightly at different temperatures. Furthermore, the dielectric constants and dielectric loss of poly(DAROH‐a) at the same frequency barely changed from room temperature to 150 °C. The photophysical properties of poly(DAROH‐a) film were also investigated. Poly(DAROH‐a) showed an absorption peak at 280 nm. The photoluminescent emission spectrum of poly(DAROH‐a) film displayed predominant emission peaks at 521 nm. It might have potential application as high‐performance materials because of its excellent dielectric constants stability and thermal stability under high temperature. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
The cocuring behaviors of 3‐phenyl‐3,4‐dihydro‐2H‐1,3‐benzoxazine (P‐ABz) and various N‐phenylmaleimide compounds were studied with DSC, FTIR, and TGA‐GC/MS. The presence of benzoxazine compound promoted the polymerization of maleimide groups. In contrast, 4‐hydroxyphenylmaleimide (MI‐OH) and 4‐maleimidobenzoic acid (MI‐COOH), which possess acidic moieties, showed an acid‐catalytic effect on the polymerization of benzoxazine groups. The cocuring composition of P‐ABz/MI‐COOH showed low polymerization temperatures, high glass transition temperature above 220 °C, and comparable thermal stability to conventional polybenzoxazines. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1890–1899, 2006  相似文献   

13.
A series of novel borosiloxane/polybenzoxazine hybrids were synthesized through the copolymerization of 3,3′‐phenylmethanebis(3,4‐dihydro‐2H‐1,3‐benzoxazine) and phenol‐functionalized borosiloxane (BSi‐OH) oligomer. The structures were characterized using nuclear magnetic resonance and fourier transform infrared. The thermal and flame retardant properties of hybrids were investigated by dynamic mechanical analysis, thermogravimetric analysis, and oxygen index instrument. The results showed that the addition of BSi‐OH oligomer is not only highly efficient in environmentally friendly flame retardancy of polybenzoxazine, but also enhances its thermal property. Only 25 wt % content of BSi‐OH oligomer was able to increase the glass transition temperature, 5% weight loss temperature (Td5), 10% weight loss temperature (Td10), and limited oxygen index (LOI) value from original 211 °C, 374 °C, 395 °C, and 29.5 °C to 244 °C, 408 °C, 448 °C, and 40.1, respectively. This work provides a facile and useful method for the preparation of new polybenzoxazines possessing highly efficient and environmentally friendly flame retardance as well as heat resistance. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2390–2396  相似文献   

14.
A siloxane‐containing diphenol is synthesized from 1,1,3,3‐tetramethyldisiloxane and o‐allylphenol, followed by the Mannich condensation with aniline, methylamine, and formaldehyde yielding two siloxane‐containing benzoxazines. The onset polymerization temperature of aniline‐based benzoxazine is higher than that of the methylamine counterpart. The dynamic mechanical properties of the polybenzoxazines depend on the structure of the starting primary amines. Both polybenzoxazines exhibit one‐way dual‐shape memory behavior in response to changes in temperature, and they show excellent shape fixity ratios in bending, tension, and tensile stress–strain tests, high shape recovery ratios in bending and tension tests, but relatively low shape recovery ratios in tensile stress–strain test. The network chain segments including the alkylsiloxane units serve as a thermal control switch based on the glass transition temperatures (39 and 53 °C) for the polybenzoxazines. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1255–1266  相似文献   

15.
A silicon‐containing benzoxazine BATMS‐Bz (1,3‐bis(3‐aminopropyl)tetramethyldisiloxane‐benzoxazine) was used for polybenzoxazine modification by means of formation of benzoxazine copolymers with 3,4‐dihydro‐3‐phenyl‐2H‐1,3‐benzoxazine (Ph‐Bz) and 3‐furfuryl‐3,4‐dihydro‐2H‐1,3‐benzoxazine (F‐Bz), respectively. Ph‐Bz/BATMS‐Bz copolymers showed a positive deviation due the presence of intermolecular hydrogen bonding. However, this effect was not observed with F‐Bz/BATMS‐Bz copolymers. Meanwhile, BATMS‐Bz incorporation exhibited significant effect on toughening polybenzoxazines. It is therefore demonstrated that BATMS‐Bz is a high performance modifier to simultaneously enhance the Tg and toughness of polybenzoxazines. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1007–1015, 2007  相似文献   

16.
A new class of high‐performance resins of combined molecular structure of both traditional phenolics and benzoxazines has been developed. The monomers termed as methylol‐functional benzoxazines were synthesized through Mannich condensation reaction of methylol‐functional phenols and aromatic amines, including methylenedianiline (4,4′‐diaminodiphenylmethane) and oxydianiline (4,4′‐diaminodiphenyl ether), in the presence of paraformaldehyde. For comparison, other series of benzoxazine monomers were prepared from phenol, corresponding aromatic amines, and paraformaldehyde. The as‐synthesized monomers are characterized by their high purity as judged from 1H NMR and Fourier transform infrared spectra. Differential scanning calorimetric thermograms of the novel monomers show two exothermic peaks associated with condensation reaction of methylol groups and ring‐opening polymerization of benzoxazines. The position of methylol group relative to benzoxazine structure plays a significant role in accelerating polymerization. Viscoelastic and thermogravimetric analyses of the crosslinked polymers reveal high Tg (274–343 °C) and excellent thermal stability when compared with the traditional polybenzoxazines. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
A high‐molecular‐weight polymer (PBz) possessing reactive benzoxazine groups in the main chain was prepared through the Diels–Alder reaction using bis(3‐furfuryl‐3,4‐dihydro‐2H‐1,3‐benzoxazinyl)isopropane (BPA‐FBz) and bismaleimide (BMI) as monomers. The chemical structure of PBz is characterized with FTIR and 1H NMR. The polymer PBz was further thermally reacted with a high performance polymer (PBz‐R) through the ring‐opening addition reaction of benzoxazine groups and the addition reaction of maleimide groups. PBz‐R exhibit a high glass transition temperature of 242 °C, good thermal stability, high flame retardancy, high mechanical strength, and great flexibility. Another crosslinked polymer (PBz‐BR) curing from the mixture of BPA‐FBz and BMI was also prepared. The properties of PBz‐BR are also attractive but, however, not as good as what observed with PBz‐R. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6509–6517, 2008  相似文献   

18.
Poly(urethane‐benzoxazine) films as novel polyurethane ( PU )/phenolic resin composites were prepared by blending a benzoxazine monomer ( Ba ) and PU prepolymer that was synthesized from 2,4‐tolylene diisocyanate (TDI) and polyethylene adipate polyol (MW ca. 1000) in 2 : 1 molar ratio. DSC of PU/Ba blend showed an exotherm with maximum at ca. 246 °C due to the ring‐opening polymerization of Ba, giving phenolic OH functionalities that react with isocyanate groups in the PU prepolymer. The poly(urethane‐benzoxazine) films obtained by thermal cure were transparent, with color ranging from yellow to pale wine with increase of Ba content. All the films have only one glass transition temperature (Tg ) from viscoelastic measurements, indicating no phase separation in poly(urethane‐benzoxazine) due to in situ polymerization. The Tg increased with the increase of Ba content. The films containing 10 and 15% of Ba have characteristics of an elastomer, with elongation at break at 244 and 182%, respectively. These elastic films exhibit good resilience with excellent reinstating behavior. The films containing more than 20% of Ba have characteristics of plastics. The poly(urethane‐benzoxazine) films showed excellent resistance to the solvents such as tetrahydrofuran, N,N‐dimethyl formamide, and N‐methyl‐2‐pyrrolidinone that easily dissolve PU s. Thermal stability of PU was greatly enhanced even with the incorporation of a small amount of Ba . © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4165–4176, 2000  相似文献   

19.
A new benzoxazine aldehyde group containing monomer 3‐phenyl‐6‐formyl‐3, 4‐dihydro‐2H‐1, 3‐benzoxazine (Ald‐B) was synthesized via the Mannich reaction of formaldehyde, p‐hydroxybenzaldehyde, and aniline. The viscosities and curing behavior of the resins were studied. The results indicated that Ald‐B has an initial viscosity lower than 0.110 Pa s at 90°C and the maximum temperature of the exotherm was at 196°C. Dynamic mechanical analysis (DMA) of the copolymer of Ald‐B and methylenedianiline‐type bis‐benzoxazine (B‐BOZ) showed only one Tg of 251°C and high crosslink density in the matrix. The thermal stability of the copolymer was improved noticeably and the char yield at 800°C is 68.4%. The tensile strength and flexural strength of this resin cast are 72 and 137 MPa, respectively. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
A series of new polybenzoxazines were synthesized based on diphenols containing (substituted) cyclohexyl moiety and were characterized by FT‐IR, 1H‐NMR, and 13C‐NMR spectroscopy. These new benzoxazine monomers exhibited better processability with lower peak cure temperature and a wide cure controllable window (CCW) as manifested in differential scanning calorimetric analysis. The cure analysis was performed by FT‐IR spectroscopy. Glass transition temperature of new polybenzoxazines varied from 170 to 205°C. The cyclohexyl bridge groups facilitated ring opening, resulting in polymer with improved thermal stability in comparison to bisphenol A‐based benzoxazine as assessed by the various thermal analyses. The water contact angles of polybenzoxazines containing (substituted) cyclohexyl moieties were higher than that of bisphenol A‐based polybenzoxazine, implying their higher hydrophobicity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号