首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Naphthalimide‐phthalimide derivatives (NDPDs) have been synthesized and combined with an iodonium salt, N‐vinylcarbazole, amine or 2,4,6‐tris(trichloromethyl)‐1,3,5‐triazine to produce reactive species (i.e., radicals and cations). These generated reactive species are capable of initiating the cationic polymerization of epoxides and/or the radical polymerization of acrylates upon exposure to very soft polychromatic visible lights or blue lights. Compared with the well‐known camphorquinone based systems used as references, the novel NDPD based combinations employed here demonstrate clearly higher efficiencies for the cationic polymerization of epoxides under air as well as the radical polymerization of acrylates. Remarkably, one of the NDPDs (i.e., NDPD2) based systems is characterized by an outstanding reactivity. The structure/reactivity/efficiency relationships of the investigated NDPDs were studied by fluorescence, cyclic voltammetry, laser flash photolysis, electron spin resonance spin trapping, and steady state photolysis techniques. The key parameters for their reactivity are provided. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 665–674  相似文献   

2.
Isoquinolinone derivatives (IQ) have been synthesized and combined with different additives (an amine, 2,4,6‐tris(trichloromethyl)‐1,3,5‐triazine, an iodonium salt, or N‐vinylcarbazole) to produce reactive species (i.e. radicals and cations) being able to initiate the radical polymerization of acrylates, the cationic polymerization of epoxides, the thiol‐ene polymerization of trifunctional thiol/divinylether, and the synthesis of epoxide/acrylate interpenetrated polymer network IPN upon exposure to very soft polychromatic visible lights, blue laser diode or blue LED lights. Compared with the use of camphorquinone based systems, the novel combinations employed here ensures higher monomer conversions (~50–60% vs. ~15–35%) and better polymerization rates in radical polymerization. The chemical mechanisms are studied by steady‐state photolysis, fluorescence, cyclic voltammetry, laser flash photolysis, and electron spin resonance spin trapping techniques. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 567–575  相似文献   

3.
Novel thioxanthone (TX) derivatives are used as versatile photoinitiators upon visible light‐emitting diode (LED; e.g., 405, 425, and 450 nm) exposure. The mechanisms for the photochemical generation of reactive species (i.e., cations and free radicals) produced from photoinitiating systems based on the photoinitiator and an iodonium salt, tris(trimethylsilyl)silane, or an amine, were studied by UV–vis spectroscopy, fluorescence, cyclic voltammetry, steady‐state photolysis, and electron spin resonance spin‐trapping techniques. The reactive species are particularly efficient for cationic, free radical, hybrid, and thiol‐ene photopolymerizations upon LED exposure. The optimized photoinitiating systems exhibit higher efficiency than those of reference systems (i.e., isopropyl TX‐based photoinitiating systems), especially in the visible range. According to their beneficial features, these photoinitiating systems have considerable potential in photocuring applications. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 4037–4045  相似文献   

4.
Five N‐methylpicolinium derivatives were investigated to test their abilities to function as second coinitiators in free radical photopolymerization initiated by N,N′‐diethylcarbocyanine—n‐butyltriphenylborate photoredox pair ( P19B2 ). As it is shown by the kinetic data, an addition of picolinium derivatives into P19B2 photoinitiating system visibly increases the efficiency of photoinitiation. The results suggest that the rates of photoinitiation depend on the rate of the picolyl radicals formation. The redox potentials of tested N‐methylpicolinium derivatives were measured and the calculation of free energy change for the possible electron transfer reactions between all components of the system (both stable and transient individuals) was performed. The results suggest that cyanine dyes are able to start a specific chain of an electron transfer reactions involving different coinitiators (borate salt and N‐alkylpicolinium derivatives), giving as a result one photon—two‐radicals photochemical response. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 576–588, 2009  相似文献   

5.
Five organosoluble visible light benzophenone derivatives ( BPs ), incorporated different arylamine as electron donating groups have been synthesized and investigated for their roles as photoinitiating systems for free radical photopolymerization of acrylate monomer upon the UV and LED exposure. All the target compounds ( BP-1 – 5 ) have confirmed through 1H NMR, HR-MS/EI-MS spectra and elemental analysis. BPs displayed red-shifted absorption, higher molar extinction coefficient and better thermal properties as compared to reference benzophenone (BP) compound. BP and BPs in combination with hydrogen donor, triethylamine (TEA), are prepared and investigated their electron spin resonance (ESR) spectroscopy and photo-DSC (photo-differential scanning calorimetry). ESR spectra of BP-1 /TEA package showed the highest radical intensity among the test photoinitiator packages. In addition, BP-1- based formulation exhibited the best double bond conversion efficiency than other BPs and comparable to the BP for the free radical polymerization (FRP) of TMPTA under similar UV light source. We then selected BP-1 /TEA and BP/TEA package for FRP under LED light irradiation. Interesting, the BP-1 /TEA system exhibited better efficiency and shorter time at maximum heat flow than BP/TEA. This result indicates BP-1 photoinitiator not only displays good light harvesting, thermal property, but exhibits conversion efficiency under the irradiation of UV and LED.  相似文献   

6.
Silyl glyoxylates are proposed here as high‐performance photoinitiators (PIs) for the hybrid polymerization of cationic and radical monomers. Recently, silyl glyoxylates were reported as a new class of high‐performance Type I photoinitiators for free radical polymerization under air upon exposure to different near‐UV and blue LEDs. In this article, we report this new class of photoinitiators to initiate cationic polymerization in combination with an iodonium salt. This system can also be used to initiate simultaneously free radical and cationic polymerizations, for example, for the free radical/cationic hybrid polymerization and for the synthesis of interpenetrating polymer networks. The system silyl glyoxylate/iodonium exhibits excellent polymerization performances and exceptional bleaching properties compared to other well established photoinitiators (e.g., camphorquinone). Furthermore, a hybrid monomer is also introduced in this article (2‐vinyloxyethoxyethyl methacrylate [VEEM]) leading to a huge improvement of the mechanical properties of the final polymer through hybrid polymerization. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1420–1429  相似文献   

7.
The photochemical and electrochemical investigations of commercially available, safe, and cheap fluorescent brighteners, namely, triazinylstilbene (commercial name: fluorescent brightener 28) and 2,5‐bis(5‐tert‐butyl‐benzoxazol‐2‐yl)thiophene, as well as their original use as photoinitiators of polymerization upon light emitting diode (LED) irradiation are reported. Remarkably, their excellent near‐UV–visible absorption properties combined with outstanding fluorescent properties allow them to act as high‐performance photoinitiators when used in combination with diaryliodonium salt. These two‐component photoinitiating systems can be employed for free radical polymerizations of acrylate. In addition, this brightener‐initiated photopolymerization is able to overcome oxygen inhibition even upon irradiation with low LED light intensity. The underlying photochemical mechanisms are investigated by electron‐spin resonance‐spin trapping, fluorescence, cyclic voltammetry, and steady‐state photolysis techniques.

  相似文献   


8.
A new three‐component photoinitiating system (based on isopropylthioxanthone ITX, amine AH, and a bifunctional benzophenone–ketosulfone BP‐SK photoinitiator) for acrylate polymerization reactions was investigated through steady‐state photolysis (photodegradation, redox potentials, and acidity release determinations) and time‐resolved laser spectroscopy. The photopolymerization activity has been checked. It is shown that addition of ITX to BP‐SK/AH clearly enhances the efficiency of the photopolymerization of clear or pigmented coatings. This is explained (although, a direct interaction between the triplet state of ITX and BP‐SK occurs to some extents) on the basis of the interaction of BP‐SK with the ketyl radical of ITX. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4531–4541, 2000  相似文献   

9.
Two one‐component, double‐chromophoric thioxanthone photoinitiators, namely TX‐EDA and TX‐DETA were synthesized by the reaction of thioxanthone aldehyde (TX‐A) with ethylenediamine (EDA) and diethylenetriamine (DETA), respectively via a facile Schiff base reaction. Both photoinitiators were characterized by spectral analysis and photobleaching studies. DFT calculations are employed to reveal the contribution of the different orbitals to the excitation of the initiators. The double‐chromophoric nature of the initiators gives rise to an increased absorption in the near UV region when compared with the pristine TX‐A. Photoinitiated polymerization of various vinyl monomers with TX‐EDA and TX‐DETA has been investigated in the presence and absence of a co‐initiator and compared for formulations consisting of precursor TX‐A. In addition, real‐time FTIR spectroscopic studies were performed in methyl methacrylate polymerization with both initiators. The higher efficiency observed with TX‐DETA may be attributed to the additional hydrogen donating sites adjacent to nitrogen atoms. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3475–3482  相似文献   

10.
1,3,5,7,8‐pentamethyl pyrromethene difluoroborate complex (HMP) and 2,6‐diethyl‐8‐phenyl‐1,3,5,7‐tetramethylpyrromethene difluoroborate complex (EPP) were used to initiate the polymerization of a diacrylate in a two‐ and a three‐component photoinitiating system (PIS), together with an amine (ethyl‐4‐dimethylaminobenzoate, EDB) and triazine A (2‐(4‐methoxyphenyl)‐4,6‐bis(trichloromethyl)‐1,3,5‐triazine, TA) as coinitiators. For both pyrromethene dyes, the highest conversion was achieved with the three‐component PIS. As these dyes have high‐fluorescence quantum yields, steady state and time‐resolved techniques were used to study the possible fluorescence quenching by the amine and the triazine, as well as laser flash photolysis to investigate the electron transfer process that occurs in these PIS from either the singlet or triplet excited states. The electron transfer reaction is evidenced by using time‐resolved photoconductivity. Experiments show that the main interaction between the dye and both coinitiators is through its excited singlet state and the process is more efficient when TA is present. The beneficial effect noted when both coinitiators are used in a three‐component system is ascribed to secondary reactions between the coinitiators and intermediates that lead to the generation of higher amount of initiating species and the recovery of the initial dye. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2594–2603, 2010  相似文献   

11.
Several novel aromatic ketone‐based two‐photon initiators containing triple bonds and dialkylamino groups were synthesized and the structure‐activity relationships were evaluated. Branched alkyl chains were used at the terminal donor groups to improve the solubility in the multifunctional monomers. Because of the long conjugation length and good coplanarity, the evaluated initiators showed large two‐photon cross section values, while their fluorescence lifetimes and quantum yields strongly depend on the solvent polarity. All novel initiators exhibited high activity in terms of two‐photon‐induced microfabrication. This is especially true for fluorenone‐based derivatives, which displayed much broader processing windows than well‐known highly active initiators from the literature and commercially available initiators. While the new photoinitiators gave high reactivity in two‐photon‐induced photopolymerization at concentration as low as 0.1% wt, these compounds are surprisingly stable under one photon condition and nearly no photo initiation activity was found in classical photo DSC experiment. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
For polymer synthesis upon visible light, actual photoinitiator operates in a restricted part of the spectrum. As a consequence, several photoinitiators are necessary to harvest all of the emitted visible photons. Herein, 2,7‐di‐tert‐butyldimethyldihydropyrene is used for the first time as a multicolor photoinitiator for the cationic polymerization of epoxides. Upon addition of diphenyliodonium hexafluorophosphate and optionally N‐vinylcarbazole, the originality of this approach is to allow efficient monomer conversions under various excitation light sources in the 360–650 nm wavelength range: halogen lamps, and light‐emitting and laser diodes. The synthesis of an interpenetrated polymer network from an epoxide/acrylate blend using a red light at 635 nm is also feasible. The formed polymer material exhibits a photochromic character.

  相似文献   


13.
New thiopyrylium and pyrylium salt‐based photoinitiating systems for visible light induced free radical polymerization (FRP) or free radical promoted cationic polymerization (FRPCP) under visible lights are presented. The reaction mechanisms are investigated by laser flash photolysis and the structure/reactivity trend is discussed. The abilities of two different classes of coinitiators are investigated (thiols/disulfides and silanes). In FRP, upon irradiation with a xenon lamp (λ > 390 nm), the (thio)pyrylium salts in combination with thiols or disulfides lead to very high polymerization rates, compared to the reference eosin Y/methyldiethanolamine system. In FRPCP, silanes are found much better coinitiators: a high efficiency of the photopolymerization under air is noted. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7369–7375, 2008  相似文献   

14.
A novel diamine 3,5‐diamino‐4′‐phenoxylbenzophenone (DAPBP) was synthesized from the reaction of 3,5‐diamino‐4′‐chlorobenzophenone (DACBP) and phenol. Then through the polycondensation of DAPBP, toluene‐2,4‐diisocyanate (TDI), and N‐methyldiethanolamine (MDEA), we obtained a PU‐type polymeric photoinitiator containing side‐chain benzophenone (BP) and tertiary amine in the same macromolecule (PUSOA). Another polymeric photoinitiator without coinitiator amine in polymer chain (PUSO) was also synthesized for comparison. FT‐IR, 1H NMR, and GPC analyses confirmed the structures of monomer and polymeric photoinitiators. The UV–Vis spectra of PUSOA, PUSO, and DAPBP are similar, and all exhibit the maximal absorption near 290 nm. ESR spectra indicate that PUSOA can generate active species most efficiently. The photopolymerization of PU acrylate, initiated by PUSOA, PUSO/MDEA, DAPBP/MDEA, and BP/MDEA, was studied by differential scanning photocalorimetry (photo‐DSC). The results show that the in‐chain coinitiator amine can significantly improve the photoefficiency of the polymeric photoinitiator and the PUSOA is more efficient for the polymerization of PU acrylate than its low‐molecular‐weight counterpart. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
A 1,3‐benzodioxole derivative of naphthodioxinone, namely 2‐(benzo[d][1,3]dioxol‐5‐yl)‐9‐hydroxy‐2‐phenyl‐4H‐naphtho[2,3‐d][1,3]dioxin‐4‐one was synthesized and characterized. Its capability to act as caged one‐component Type II photoinitiator for free radical polymerization was examined. Upon irradiation, this photoinitiator releases 5‐benzoyl‐1,3‐benzodioxole possessing both benzophenone and 1,3‐dioxole groups in the structure as light absorbing and hydrogen donating sites, respectively. Subsequent photoexcitation of the benzophenone chromophore followed by hydrogen abstraction generates radicals capable of initiating free radical polymerization of appropriate monomers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
Two D‐π‐A‐type 2,2,2‐trifluoroacetophenone derivatives, namely, 4′‐(4‐( N,N‐diphenyl)amino‐phenyl)‐phenyl‐2,2,2‐trifluoroacetophenone (PI‐Ben) and 4′‐(4‐(7‐(N,N‐diphenylamino)‐9,9‐dimethyl‐9H‐fluoren‐2‐yl)‐phenyl‐2,2,2‐trifluoroacetophenone (PI‐Flu), are developed as high‐performance photoinitiators combined with an amine or an iodonium salt for both the free‐radical polymerization of acrylates and the cationic polymerization of epoxides and vinyl ether upon exposure to near‐UV and visible light‐emitting diodes (LEDs; e.g., 365, 385, 405, and 450 nm). The photochemical mechanisms are investigated by UV‐Vis spectra, molecular‐orbital calculations, fluorescence, cyclic voltammetry, photolysis, and electron‐spin‐resonance spin‐trapping techniques. Compared with 2,2,2‐trifluoroacetophenone, both photoinitiators exhibit larger redshift of the absorption spectra and higher molar‐extinction coefficients. PI‐Ben and PI‐Flu themselves can produce free radicals to initiate the polymerization of acrylate without any added hydrogen donor. These novel D‐π‐A type trifluoroacetophenone‐based photoinitiating systems exhibit good efficiencies (acrylate conversion = 48%–66%; epoxide conversion = 85%–95%; LEDs at 365–450 nm exposure) even in low‐concentration initiators (0.5%, w/w) and very low curing light intensities (1–2 mW cm?2). © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1945–1954  相似文献   

17.
A few N‐alkoxypyridinium salts are developed as photoinitiators for efficient polymerization reactions. They are characterized by absorption properties below 300 nm, and generate alkoxy radicals on UV‐Vis light exposure. The squarylium dye was used as a blue‐light photosensitizer. Polymerization results are correlated with the photochemistry of N‐alkoxypyridinium salts. The quenching of the excited singlet state of squarylium dye by pyridinium salt and the formation of the semioxidized species of squaraine suggests an electron transfer from an excited dye to a coinitiator, and that the resulting oxygen‐centered radical initiates the polymerization process. The chemical mechanism was investigated by steady state photolysis and nanosecond laser flash photolysis experiments. Photoinitiating activity of new photoinitiators for initiation of polymerization of trimethylolpropane triacrylate in the UV‐blue light region was compared with photoinitiating ability of selected commercially available initiators. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2840–2850  相似文献   

18.
《先进技术聚合物》2018,29(8):2264-2272
A new benzodioxole derivative, 4‐(1,3‐benzodioxol‐5‐yloxy) benzophenone (BPBDO), based on benzophenone and sesamol was precisely synthesized, and it can be used as a 1‐component type II photoinitiator. Elementary analysis, atmospheric pressure chemical ionization mass spectrometry, 1H nuclear magnetic resonance, and 13C nuclear magnetic resonance studies revealed that the molecular structure of BPBDO consisted of both benzophenone (BP) and benzodioxole (BDO) structures. The laser flash photolysis experiments and electron spin resonance test indicated that the process of radicals generated from BPBDO after irradiation was similar to 3 processes of ethyl 4‐dimethylaminobenzoate and BP. The kinetics of photopolymerization of the photoinitiator was also studied by real‐time infrared spectroscopy. The oxygen content, light intensity, and viscosity of the monomer affected the decomposition (Rd) and polymerization rate, and the final double bond conversion was also studied. All the results suggest that BPBDO is a 1‐component photoinitiator that is an efficient photoinitiator for free radical polymerization. In contrast to typical dual‐component photoinitiators, eg, BP/ethyl 4‐dimethylaminobenzoate or BP/BDO, BPBDO does not require an additional amine coinitiator for the initiation and is applicable in nonamine resin systems.  相似文献   

19.
20.
A new visible light photoinitiating system (PIS) containing a linked dye‐coinitiator dyad and a nondissociative electron donor was evaluated and compared with unlinked three components systems. Our results show that in the physical mixture of the three component PIS, addition of the nondissociative donor decreased the Rp to a great extent, whereas in combination with the dyads an increase in Rp is observed. The results were explained based on faster intramolecular electron transfer in linked pairs and point out the importance of linked initiator in three‐component PIS for the first time. This system is the first example of three‐components system with a nondissociative donor that would be useful for long life coating formulation. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4325–4330  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号