首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly flexible, TpPa‐1@PBI‐BuI and TpBD@PBI‐BuI hybrid membranes based on chemically stable covalent organic frameworks (COFs) could be obtained with the polymer. The loading obtained was substantially higher (50 %) than generally observed with MOFs. These hybrid membranes show an exciting enhancement in permeability (about sevenfold) with appreciable separation factors for CO2/N2 and CO2/CH4. Further, we found that with COF pore modulation, the gas permeability can be systematically enhanced.  相似文献   

2.
We report herein an efficient, fast, and simple synthesis of an imine‐based covalent organic framework (COF) at room temperature (hereafter, RT‐COF‐1 ). RT‐COF‐1 shows a layered hexagonal structure exhibiting channels, is robust, and is porous to N2 and CO2. The room‐temperature synthesis has enabled us to fabricate and position low‐cost micro‐ and submicropatterns of RT‐COF‐1 on several surfaces, including solid SiO2 substrates and flexible acetate paper, by using lithographically controlled wetting and conventional ink‐jet printing.  相似文献   

3.
Polyarylates based on isophthalic (IA) and terephthalic (TA) acids and an equimolar mixture of the diols Bisphenol A (BPA) and 1,1 bi‐2‐naphthol (BN) were synthesized to produce BPA‐BN/IA and BPA‐BN/TA polymers and to measure their gas permeability coefficients, P(i), at several pressures and 35 °C, to the gases O2, N2, CH4, and CO2. For the BPA‐BN/IA membranes, at a 2 atm up‐stream pressure, the P(O2) and P(CO2) are 0.93 and 4.0 Barrers with O2/N2 and CO2/CH4 ideal separation factors of 6.7 and 27. For the BPA‐BN/TA, at a 2 atm up‐stream pressure, the P(O2) and P(CO2) are 2.0 and 9.9 Barrers with O2/N2 and CO2/CH4 ideal separation factors of 5.6 and 21. Comparing the selectivity–permeability balance of properties shown by the BPA/TA membranes with that shown by the copolymer BPA‐BN/TA, the balance moves in the direction of higher selectivity and lower permeability because of the incorporation of BN, which is a more rigid monomer than BPA. However, when the balance of properties for the pair O2/N2 shown by BPA‐BN/TA is compared with the one shown by other membranes such as those based on mixtures of diols and diacids, that is the bisphenol A‐naphthalene/I‐T polymers reported in the literature, the balance moves up and to the right of the typical selectivity–permeability trade‐off observed in the BPA‐polyarylate family. Thus, simultaneous incorporations of flexible and rigid monomers in both the diols and the diacids lead to more productive and more selective membranes. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 256–263, 2006  相似文献   

4.
Pure sym‐N2O4 isolated in solid Ne was obtained by passing cold neon gas over solid N2O4 at ?115 °C and quenching the resulting gaseous mixture at 6.3 K. Filtered UV irradiation (260–400 nm) converts sym‐N2O4 into trans‐ONONO2, a weakly interacting (NO2)2 radical pair, and traces of the cis‐N2O2?O2 complex. Besides the weakly bound ON?O2 complex, cis‐N2O2?O2 was also obtained by co‐deposition of NO and O2 in solid Ne at 6.3 K, and both complexes were characterised by their matrix IR spectra. Concomitantly formed cis‐N2O2 dissociated on exposure to filtered IR irradiation (400–8000 cm?1), and the cis‐N2O2?O2 complex rearranged to sym‐N2O4 and trans‐ONONO2. Experiments using 18O2 in place of 16O2 revealed a non‐concerted conversion of cis‐N2O2?O2 into these species, and gave access to four selectively di‐18O‐substituted trans‐ONONO2 isotopomers. No isotopic scrambling occurred. The IR spectra of sym‐N2O4 and of trans‐ONONO2 in solid Ne were recorded. IR fundamentals of trans‐ONONO2 were assigned based on experimental 16/18O isotopic shifts and guided by DFT calculations. Previously reported contradictory measurements on cis‐ and trans‐ONONO2 are discussed. Dinitroso peroxide, ONOONO, a proposed intermediate in the IR photoinduced rearrangement of cis‐N2O2?O2 to the various N2O4 species, was not detected. Its absence in the photolysis products indicates a low barrier (≤10 kJ mol?1) for its exothermic O? O bond homolysis into a (NO2)2 radical pair.  相似文献   

5.
A chemically stable 2D microporous COF ( PMCR-1 ) was synthesized via the multicomponent Povarov reaction. PMCR-1 exhibits a remarkable and long-term stable photocatalytic H2O2 production rate (60 h) from pure and sea water under visible light. The H2O2 production is markedly enhanced when benzyl alcohol (BA) is added as reductant, which is also due to a strong π–π interaction of BA with dangling phenyl moieties in the COF pores introduced by the multicomponent Povarov reaction. Motivated by the concomitant BA oxidation to benzaldehyde during H2O2 formation, the photocatalytic oxidation of various organic substrates such as benzyl amine and methyl sulfide derivatives was investigated. It is shown that the well-defined micropores of PMCR-1 enable size-selective photocatalytic oxidation.  相似文献   

6.
COF‐1 has a structure with rigid 2D layers composed of benzene and B3O3 rings and weak van der Waals bonding between the layers. The as‐synthesized COF‐1 structure contains pores occupied by solvent molecules. A high surface area empty‐pore structure is obtained after vacuum annealing. High‐pressure XRD and Raman experiments with mesitylene‐filled (COF‐1‐M) and empty‐pore COF‐1 demonstrate partial amorphization and collapse of the framework structure above 12–15 GPa. The ambient pressure structure of COF‐1‐M can be reversibly recovered after compression up to 10–15 GPa. Remarkable stability of highly porous COF‐1 structure at pressures at least up to 10 GPa is found even for the empty‐pore structure. The bulk modulus of the COF‐1 structure (11.2(5) GPa) and linear incompressibilities (k[100]=111(5) GPa, k[001]=15.0(5) GPa) were evaluated from the analysis of XRD data and cross‐checked against first‐principles calculations.  相似文献   

7.
The design and fabrication of versatile covalent organic frameworks (COFs) with multiple properties for diverse applications is highly desirable. Here, the difunctional COFs material g–C18N3–COF was prepared and modified to be applied for efficient photocatalytic degradation of Rhodamine B (RhB) and pH detection, respectively. Owing to the triazine unit which was suitable for photocatalyst construction, g–C18N3–COF was sensitive to visible light and exhibited excellent photocatalysis capability toward RhB. Specially, the photocatalytic degradation of RhB with a high concentration of 300 ppm using g–C18N3–COF reached equilibrium within 6 h. Moreover, g–C18N3–COF was further grown in-situ onto the filter paper to generate a novel composite material g–C18N3–COF@Paper with bright yellow fluorescence. g–C18N3–COF@Paper could visualize the pH detection by remarkable changes in its fluorescent intensity and color in the range of pH value from 1 to 5, on account of the protonation of the nitrogen atoms from the triazine ring in g–C18N3–COF. The triazine-based sp2 carbon-conjugated g–C18N3–COF, respectively, used as photocatalyst and sensor in this work offers a new strategy to construct the versatile COFs material, facilitating the application of functional COFs in the environmental protection field.  相似文献   

8.
A strategy to covalently connect crystalline covalent organic frameworks (COFs) with semiconductors to create stable organic–inorganic Z‐scheme heterojunctions for artificial photosynthesis is presented. A series of COF–semiconductor Z‐scheme photocatalysts combining water‐oxidation semiconductors (TiO2, Bi2WO6, and α‐Fe2O3) with CO2 reduction COFs (COF‐316/318) was synthesized and exhibited high photocatalytic CO2‐to‐CO conversion efficiencies (up to 69.67 μmol g?1 h?1), with H2O as the electron donor in the gas–solid CO2 reduction, without additional photosensitizers and sacrificial agents. This is the first report of covalently bonded COF/inorganic‐semiconductor systems utilizing the Z‐scheme applied for artificial photosynthesis. Experiments and calculations confirmed efficient semiconductor‐to‐COF electron transfer by covalent coupling, resulting in electron accumulation in the cyano/pyridine moieties of the COF for CO2 reduction and holes in the semiconductor for H2O oxidation, thus mimicking natural photosynthesis.  相似文献   

9.
Crystalline and porous covalent organic frameworks (COFs) and metal‐organic frameworks (MOFs) materials have attracted enormous attention in the field of photocatalytic H2 evolution due to their long‐range order structures, large surface areas, outstanding visible light absorbance, and tunable band gaps. In this work, we successfully integrated two‐dimensional (2D) COF with stable MOF. By covalently anchoring NH2‐UiO‐66 onto the surface of TpPa‐1‐COF, a new type of MOF/COF hybrid materials with high surface area, porous framework, and high crystallinity was synthesized. The resulting hierarchical porous hybrid materials show efficient photocatalytic H2 evolution under visible light irradiation. Especially, NH2‐UiO‐66/TpPa‐1‐COF (4:6) exhibits the maximum photocatalytic H2 evolution rate of 23.41 mmol g?1 h?1 (with the TOF of 402.36 h?1), which is approximately 20 times higher than that of the parent TpPa‐1‐COF and the best performance photocatalyst for H2 evolution among various MOF‐ and COF‐based photocatalysts.  相似文献   

10.
Mixed‐matrix membranes (MMMs) comprising Matrimid and a microporous azine‐linked covalent organic frameworks (ACOF‐1) were prepared and tested in the separation of CO2 from an equimolar CO2/CH4 mixture. The COF‐based MMMs show a more than doubling of the CO2 permeability upon 16 wt % ACOF‐1 loading together with a slight increase in selectivity compared to the bare polymer. These results show the potential of COFs in the preparation of MMMs.  相似文献   

11.
《Electroanalysis》2018,30(1):137-145
3D Flower‐like manganese dioxide (MnO2) nanostructure with the ability of catalysis for hydrogen peroxide (H2O2) and super large area that can support gold nanoparticles (AuNPs) with enhanced activity of electron transfer have been developed. The nanostructure of hybrids was prepared by directly mixing citric‐capped AuNPs and 3‐aminopropyltriethoxysilane (3‐APTES)‐capped nano‐MnO2 using an electrostatic adsorption strategy. The Au‐MnO2 composite was extensively characterized by scanning electron microscope (SEM), X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), the Brunauer‐Emmett‐Teller (BET) method and X‐ray photoemission spectroscopy (XPS). Electrochemical properties were evaluated through cyclic voltammetry (CV) and amperometric method. The prepared sensor showed excellent electrochemical properties towards H2O2 with a wide linear range from 2.5×10−3∼1.39 mM and 3.89∼13.89 mM. The detection limit is 0.34 μM (S/N=3) with the sensitivities of 169.43 μA mM−1 cm−2 and 55.72 μA mM−1 cm−2. The detection of real samples was also studied. The result exhibited that the prepared sensor can be used for H2O2 detection in real samples.  相似文献   

12.
Developing effective synthetic strategies as well as enriching functionalities for sp2‐carbon‐linked covalent organic frameworks (COFs) still remains a challenge. Now, taking advantage of a variant of Knoevenagel condensation, a new fully conjugated COF ( g‐C34N6‐COF ) linked by unsubstituted C=C bonds was synthesized. Integrating 3,5‐dicyano‐2,4,6‐trimethylpyridine and 1,3,5‐triazine units into the molecular framework leads to the enhanced π‐electron communication and electrochemical activity. This COF shows uniform nanofibrous morphology. By assembling it with carbon nanotubes, a flexible thin‐film electrode for a micro‐supercapacitor (MSC) can be easily obtained. The resultant COF‐based MSC shows an areal capacitance of up to 15.2 mF cm?2, a high energy density of up to 7.3 mWh cm?3, and remarkable rate capability. These values are among the highest for state‐of‐the‐art MSCs. Moreover, this device exhibits excellent flexibility and integration capability.  相似文献   

13.
Carbon‐supported NiII single‐atom catalysts with a tetradentate Ni‐N2O2 coordination formed by a Schiff base ligand‐mediated pyrolysis strategy are presented. A NiII complex of the Schiff base ligand (R,R)‐(?)‐N,N′‐bis(3,5‐di‐tert‐butylsalicylidene)‐1,2‐cyclohexanediamine was adsorbed onto a carbon black support, followed by pyrolysis of the modified carbon material at 300 °C in Ar. The Ni‐N2O2/C catalyst showed excellent performance for the electrocatalytic reduction of O2 to H2O2 through a two‐electron transfer process in alkaline conditions, with a H2O2 selectivity of 96 %. At a current density of 70 mA cm?2, a H2O2 production rate of 5.9 mol gcat.?1 h?1 was achieved using a three‐phase flow cell, with good catalyst stability maintained over 8 h of testing. The Ni‐N2O2/C catalyst could electrocatalytically reduce O2 in air to H2O2 at a high current density, still affording a high H2O2 selectivity (>90 %). A precise Ni‐N2O2 coordination was key to the performance.  相似文献   

14.
Imine COF (covalent organic framework) based on the Schiff base reaction between p‐phenylenediamine (PDA) and benzene‐1,3,5‐tricarboxaldehyde (TCA) was prepared on the HOPG‐air (air=humid N2) interface and characterized using different probe microscopies. The role of the molar ratio of TCA and PDA has been explored, and smooth domains of imine COF up to a few μm are formed for a high TCA ratio (>2) compared to PDA. It is also observed that the microscopic roughness of imine COF is strongly influenced by the presence of water (in the reaction chamber) during the Schiff base reaction. The electronic property of imine COF obtained by tunneling spectroscopy and dispersion corrected density functional theory (DFT) calculation are comparable and show semiconducting nature with a band gap of ≈1.8 eV. Further, we show that the frontier orbitals are delocalized entirely over the framework of imine COF. The calculated cohesive energy shows that the stability of imine COF is comparable to that of graphene.  相似文献   

15.
The title complex, bis[μ3cisN‐(2‐aminopropyl)‐N′‐(2‐carboxylatophenyl)oxamidato(3−)]‐1:2:4κ7N,N′,N′′,O:O′,O′′:O′′′;2:3:4κ7O′′′:N,N′,N′′,O:O′,O′′‐bis(2,2′‐bipyridine)‐2κ2N,N′;4κ2N,N′‐dichlorido‐1κCl,3κCl‐tetracopper(II) dihydrate, [Cu4(C12H12N3O4)2Cl2(C10H8N2)2]·2H2O, consists of a neutral cyclic tetracopper(II) system having an embedded centre of inversion and two solvent water molecules. The coordination of each CuII atom is square‐pyramidal. The separations of CuII atoms bridged by cisN‐(2‐aminopropyl)‐N′‐(2‐carboxylatophenyl)oxamidate(3−) and carboxyl groups are 5.2096 (4) and 5.1961 (5) Å, respectively. A three‐dimensional supramolecular structure involving hydrogen bonding and aromatic stacking is observed.  相似文献   

16.
The polymeric title compounds, namely catena‐poly[[[di‐μ‐but‐2‐enoato‐κ3O:O,O′;κ3O,O′:O′‐bis[diaquadibut‐2‐enoato‐κO2O,O′‐neodymium(III)]]‐μ‐4,4′‐bipyridyl N,N′‐dioxide‐κ2O:O′] 4,4′‐bipyridyl N,N′‐dioxide solvate] and the erbium(III) and yttrium(III) analogues, {[Ln2(C4H5O2)6(C10H8N2O2)(H2O)4]·C10H8N2O2}n (Ln = Nd, Er and Y), form from [Ln2(bt)6(H2O)4] dimers (bt is but‐2‐enoate) bridged by 4,4′‐bipyridyl dioxide (bno) spacers into sets of parallel chains; these linear arrays are interconnected by aqua‐mediated hydrogen bonds into broad two‐dimensional structures, which in turn interact with each other though the hydrogen‐bonded bridged bno solvent units. Both independent bno units in the structures are bisected by symmetry centres.  相似文献   

17.
A azine‐linked covalent organic framework, COF‐JLU2, was designed and synthesized by condensation of hydrazine hydrate and 1,3,5‐triformylphloroglucinol under solvothermal conditions for the first time. The new covalent organic framework material combines permanent micropores, high crystallinity, good thermal and chemical stability, and abundant heteroatom activated sites in the skeleton. COF‐JLU2 possesses a moderate BET surface area of over 410 m2 g?1 with a pore volume of 0.56 cm3 g?1. Specifically, COF‐JLU2 displays remarkable carbon dioxide uptake (up to 217 mg g?1) and methane uptake (38 mg g?1) at 273 K and 1 bar, as well as high CO2/N2 (77) selectivity. Furthermore, we further highlight that it exhibits a higher hydrogen storage capacity (16 mg g?1) than those of reported COFs at 77 K and 1 bar.  相似文献   

18.
Two acylhydrazone complexes, bis{6‐methyl‐N′‐[1‐(pyrazin‐2‐yl‐κN1)ethylidene]nicotinohydrazidato‐κ2N′,O}nickel(II), [Ni(C13H12N5O)2], (I), and di‐μ‐azido‐κ4N1:N1‐bis({6‐methyl‐N′‐[1‐(pyrazin‐2‐yl‐κN1)ethylidene]nicotinohydrazidato‐κ2N′,O}nickel(II)), [Cu2(C13H12N5O)2(N3)2], (II), derived from 6‐methyl‐N′‐[1‐(pyrazin‐2‐yl)ethylidene]nicotinohydrazide (HL) and azide salts, have been synthesized. HL acts as an N,N′,O‐tridentate ligand in both complexes. Complex (I) crystallizes in the orthorhombic space group Pbcn and has a mononuclear structure, the azide co‐ligand is not involved in crystallization and the Ni2+ centre lies in a distorted {N4O2} octahedral coordination environment. Complex (II) crystallizes in the triclinic space group P and is a centrosymmetric binuclear complex with a crystallographically independent Cu2+ centre coordinating to three donor atoms from the deprotonated L? ligand and to two N atoms belonging to two bridging azide anions. The two‐ and one‐dimensional supramolecular structures are constructed by hydrogen‐bonding interactions in (I) and (II), respectively. The in vitro urease inhibitory evaluation revealed that complex (II) showed a better inhibitory activity, with the IC50 value being 1.32±0.4 µM. Both complexes can effectively bind to bovine serum albumin (BSA) by 1:1 binding, which was assessed via tryptophan emission–quenching measurements. The bioactivities of the two complexes towards jack bean urease were also studied by molecular docking. The effects of the metal ions and the coordination environments in the two complexes on in vitro urease inhibitory activity are preliminarily discussed.  相似文献   

19.
Dyestuff textile wastewater treatment has become a research hotspot due to its high chroma, poor biodegradability, and low toxicity characteristics. In this paper, we have synthesized magnetic Fe3O4 and core‐shell Fe3O4@SiO2 materials by hydrothermal methods. These materials were characterized by XRD, TEM, N2 adsorption‐desorption and so on. These materials’ heterogeneous Fenton has been applied to dye wastewater treatment. Methylene blue was used as a typical target of dye wastewater. Decolorization ratios of methylene blue were determined by different nanostructure composites catalysts. A serious of results of study showed that decolorization ratios of magnetic nanoparticles and core‐shell composites arrived at above 90 % under the weakly acidic or neutral conditions and room temperature. When these catalysts were reused, the results show that Fe3O4@SiO2 materials were possessed with good cycle performance.  相似文献   

20.
2‐Amino‐3‐hydroxypyridinium dioxido(pyridine‐2,6‐dicarboxylato‐κ3O2,N,O6)vanadate(V), (C5H7N2O)[V(C7H3NO4)O2] or [H(amino‐3‐OH‐py)][VO2(dipic)], (I), was prepared by the reaction of VCl3 with dipicolinic acid (dipicH2) and 2‐amino‐3‐hydroxypyridine (amino‐3‐OH‐py) in water. The compound was characterized by elemental analysis, IR spectroscopy and X‐ray structure analysis, and consists of an anionic [VO2(dipic)] complex and an H(amino‐3‐OH‐py)+ counter‐cation. The VV ion is five‐coordinated by one O,N,O′‐tridentate dipic dianionic ligand and by two oxide ligands. Thermal decomposition of (I) in the presence of polyethylene glycol led to the formation of nanoparticles of V2O5. Powder X‐ray diffraction (PXRD) and scanning electron microscopy (SEM) were used to characterize the structure and morphology of the synthesized powder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号