首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 15 毫秒
1.
Biodegradable multi‐l ‐arginyl‐poly‐l ‐aspartate (MAPA), more commonly cyanophycin, prepared with recombinant Escherichia coli contains a polyaspartate backbone with lysine and arginine as side chains. Two assemblies of polyelectrolyte multilayers (PEMs) are fabricated at three different concentration ratios of insoluble MAPA (iMAPA) with hyaluronic acid (iMAPA/HA) and with γ‐polyglutamic acid (iMAPA/γ‐PGA), respectively, utilizing a layer‐by‐layer approach. Both films with iMAPA and its counterpart, HA or γ‐PGA, as the terminal layer are prepared to assess the effect on film roughness, cell growth, and cell migration. iMAPA incorporation is higher for a higher concentration of the anionic polymer due to better charge interaction. The iMAPA/HA films when compared to iMAPA/γ‐PGA multilayers show least roughness. The growth rates of L929 fibroblast cells on the PEMs are similar to those on glass substrate, with no supplementary effect of the terminal layer. However, the migration rates of L929 cells increase for all PEMs. γ‐PGA incorporated films impart 50% enhancement to the cell migration after 12 h of culture as compared to the untreated glass, and the smooth films containing HA display a maximum 82% improvement. The results present the use of iMAPA to construct a new layer‐by‐layer system of polyelectrolyte biopolymers with a potential application in wound dressing.  相似文献   

2.
The thermal conductivity of poly(L‐lactic acid) specimens subjected to uniaxial elongational deformations in the rubbery state followed by quenching is investigated experimentally. A novel optical technique known as forced Rayleigh scattering is used to measure two components of the thermal diffusivity tensor as a function of elongation. The component along the direction of elongation increases, while the component in the direction perpendicular to elongation decreases, relative to the equilibrium value. Measurements of the stress at the point of quenching, as well as the density and specific heat capacity, are also reported as a function of elongation. Anisotropy of the thermal conductivity tensor is more than 50% at moderate elongations, and it is found to be a nonlinear function of stress. The latter is in contrast to results found in previous studies where a linear relationship between thermal conductivity anisotropy and stress, or the stress‐thermal rule, has been observed for several amorphous polymer systems. Failure of the stress‐thermal rule is attributed to the presence of semicrystalline domains in the deformed samples. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 547–553  相似文献   

3.
Poly(l ‐lactic acid) (PLLA) is a bio‐degradable polyester which exhibits brittle behaviour due to relatively fast physical ageing of the amorphous phase. This work describes the effects of thermal rejuvenation and molecular orientation of the amorphous phase on this physical ageing process. Uniaxial compression testing showed that physical ageing of the amorphous phase increases the yield stress and the associated strain softening response, both contributing to the observed embrittlement of PLLA in tension. Molecular orientation at constant crystallinity was applied by uniaxial and biaxial plastic deformation just above the glass transition temperature, up to plastic strains of 200% to avoid strain‐induced crystallisation. Using stress‐relaxation experiments combined with tensile testing, both as a function of ageing time, it is shown that both uniaxial and biaxial plastic deformation in excess of 150% plastic strain, decelerates and possibly prohibits the physical ageing process. The oriented monofilaments and films have improved mechanical properties such as stiffness, strength and strain‐to‐break, which were not affected by physical ageing during the whole testing period (40 days). In addition, plastic deformation to higher draw ratios and/or higher temperatures strongly enhanced crystallinity and resulted in PLLA monofilaments and films that also exhibited tough behaviour, not affected by physical ageing. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2233–2244  相似文献   

4.
A crosslinked silicone‐containing macromolecular charring agent (CSi‐MCA) was synthesized via “one‐pot” process, and it was combined with ammonium polyphosphate (APP) to synergistically improve the flame retardancy of poly(l ‐lactic acid) (PLA). The chemical structure of synthesized CSi‐MCA was characterized by Fourier transform infrared spectroscopy and solid‐state 13C nuclear magnetic resonance. The thermal gravimetric analyzer indicated that the CSi‐MCA displayed good thermal stability and high residue via the catalytic crosslinking. Furthermore, the flame retardant effect of CSi‐MCA and APP as intumescent flame retardants in PLA system was investigated by limited oxygen index, UL94, and cone calorimeter test. When the content of CSi‐MCA was 5 wt% and APP was 10 wt% (CSi‐MCA/APP = 1/2), the limited oxygen index value of composites was 33.6 and UL94 classed a V‐0 rating. The peak heat release rate and total heat release of PLA composites containing both APP and CSi‐MCA decreased significantly in comparison with those with APP or CSi‐MCA alone. The flame retardancy mechanism was investigated via analyzing residual chars by scanning electron microscopy and X‐ray photoelectron spectroscopy as well as the possible chemical reaction between APP and CSi‐MCA by thermal gravimetric analyzer and Fourier transform infrared spectroscopy. The results showed that the enhanced flame retardancy was attributed mainly to synergistic effect of CSi‐MCA and APP, which could form a compact, continuous, and protective layer during combustion. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号