首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of novel thiazole acrylonitrile derivatives was designed and synthesized utilizing NC‐510 as a precursor. Their structures were characterized by NMR spectrometry, MS, and elemental analysis. The results of bioassay indicated that some of these title compounds exhibited 100% mortality at 50 mg/L against Aphis fabae . In particular, the compound 11c displayed the best activity: Its LC50 value achieved 1.45 mg/L, and its insecticidal potency is comparable with that of NC‐510.  相似文献   

2.
In order to overcome the problem of pesticide resistance, it is necessary to discover novel pesticides with new mechanisms of action. Herein, a series of novel pyrimidin-4-amine derivatives containing trifluoroethyl sulfide moiety were designed and synthesized. Bioassays indicated that the title compounds synthesized possessed excellent acaricidal activity against Tetranychus urticae and fungicidal activity against Erysiphe graminis and Puccinia sorghi. Especially, the acaricidal activity of 5-chloro-6-(difluoromethyl)-N-(2-(2-fluoro-4-methyl-5-((2,2,2-trifluoroethyl)thio)phenoxy)ethyl)pyrimidin-4-amine (compound T4 , LC50 = 0.19 mg/L) against T. urticae was close to commercial acaricide cyenopyrafen, and the fungicidal activity of 5-chloro-6-(difluoromethyl)-2-methyl-N-(2-(3-((2,2,2-trifluoroethyl)thio)phenoxy)ethyl)pyrimidin-4-amine (compound T15 , EC50 = 1.32 mg/L) against P. sorghi. was superior to commercial fungicide tebuconazole. The synthesis and characterization of these compounds were given and the structure–activity relationships were discussed.  相似文献   

3.
A series of novel pyridazinone derivatives were designed and synthesized by replacing 4-(tert-butyl)phenyl moiety of pyridaben with 2-phenylthiazole or oxazole fragments via activity substructure connecting approach. The structures of all target compounds were characterized through NMR, MS, and elemental analysis. Bioassay results exhibit that most compounds showed potent bioactivities against Aphis fabae, Tetranychus urticae, Erysiphe graminis, and/or Puccinia polysora. Among the newly synthesized compounds, 2-(tert-butyl)-4-chloro-5-(((2-phenylthiazol-4-yl)methyl)thio)pyridazin-3(2H)-one ( 12b ) displays remarkable insecticidal activity against A fabae. Its LC50 value (2.73 mg/L) is better than that of pyridaben (5.46 mg/L), although inferior to that of imidacloprid (0.51 mg/L). In addition to its extraordinary insecticidal activity, compound 12b also exerts 96.9% fungicidal activities against P polysora at 500 mg/L in vivo, significantly superior to that of pyridaben (50.0%), while slightly lower than that of tebuconazole (100%). This article discusses the synthesis, bioassay results, and structure-activity relationship of this series of novel pyridazinone derivatives.  相似文献   

4.
Two mononuclear ruthenium complexes ( 1 and 2 ) with aroyl/acylthiourea as an ancillary ligand of type, [(η6p‐cymene)RuCl(L‐N,S)], where [ L1  = 2,4‐dichloro‐N‐(o‐tolylcarbamothioyl)benzamide] and L2  = N‐(phenylcarbamothioyl)cyclohexanecarboxamide] were synthesized and well characterized. The single crystal X‐ray diffraction studies revealed the coordination mode and the geometry of the complexes. The two complexes adopted general piano‐stool (three‐legged) geometry with a novel coordination mode of aroyl/acylthiourea through amide N (anionic) and thiocarbonyl S (neutral). This type of monobasic bidentate coordination of the aroyl/acylthiourea ligand was witnessed the first time around the metal ion. The coordination of the complexes was well explained through geometric parameters and frontier molecular orbital parameter values computed at the B3LYP/SDD level. The synthesized complexes were also screened for their antibacterial, antifungal, antioxidant and in vitro antiproliferative activities. Complexes exhibited good antimicrobial agents against various pathogens. The antioxidant activity of the complex 2 has shown most potent activity with IC50 value of 48.55 ± 1.7 μM compared to the reference drug. In addition, the in vitro antiproliferative activity of the complex 2 showed excellent activity against HepG‐2 cell line with the IC50 value of 24.30 ± 1.20 μM which is close to Doxorubicin standard drug.  相似文献   

5.
The triazole sulfonamide played a very important role in the field of research of new agrochemical compounds as a novel heterocyclic compound with lack of reported resistance. For the research on the innovative triazole sulfonamide fungicide effective against cucumber downy mildew (CDM), the present article designed an array of 1,2,4‐triazole‐1,3‐disulfonamide derivatives. The derivatives were synthesized via coupling multiple benzylamine with triazole sulfonamide groups. 1H‐NMR, 13C‐NMR, and LC–MS spectrometry were used to characterize these synthesized compounds. Most of these derivatives exhibited better fungicidal activities than that of the commercial cyanosole using bioassays. In particular, compounds 6g and 6h showed the best fungicidal activity against CDM (EC50 = 6.91 and 10.62 mg/L). Comparative experiments demonstrated that the fungicidal activity of 6g and 6h was better than the commercial pesticides amisulbrom and cyanosole. According to the study, the compound 6g had a giant application potential on fungicide against CDM.  相似文献   

6.
The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Yponomeutidae) is the most serious pest of cruciferous crops grown in the world causing economic yield loss. Several synthetic insecticides have been used against P. xylostella but satisfactory control was not achieved due to development of resistance to insecticides. Therefore, the present study was carried out to screen different fractions of Zanthoxylum armatum for their insecticidal activities against second instar larvae of P. xylostella. Results indicate, all the fractions showed activity to P. xylostella. However, n-hexane fraction of Z. armatum showed maximum larvicidal activity with minimum LC50 value of 2988.6 ppm followed by ethanol (LC50 = 12779.7 ppm) and methanol fraction (LC50 = 12908.8 ppm) whereas chloroform fraction was least toxic (LC50 = 16750.6 ppm). The GC–MS analysis of n-hexane fraction of leaf extract showed maximum larvicidal activity, which may be due to two major compounds i.e. 2-undecanone (19.75%) and 2-tridecanone (11.76%).  相似文献   

7.
Aphid, Aphis craccivora Koch (Hemiptera: Aphididae), is a major sap-sucking insect pest of leguminous crops and also transmits plant viruses, leading to economic yield loss. Indiscriminate and repeated use of insecticides for control of aphid leads to the development of resistance, and is harmful to the environment, non-target organisms, etc. Plant-based extracts/seed oils (SO) are the best alternatives to insecticides. Insecticidal activities of Triadica sebifera have not been reported against A. craccivora and other insect pests to date. In the current study, the main objective was to study the insecticidal activities of leaf/bark extracts/fractions, seed oil, isolated compounds, and their combinations against A. craccivora. Results showed that, among the extracts, ethanolic bark extract 80% (LC50 = 5115.98 mg/L) was more effective against A. craccivora. Among fractions, the n-hexane fraction of leaves (LC50 = 425.73 mg/L) and the ethyl acetate fraction of bark (LC50 = 813.45 mg/L) were promising. Among compounds, gallic acid was the most effective (LC50 = 1303.68 mg/L) compared to shikimic acid and quercetin. SO (LC50 = 850.94 mg/L) was superior compared to extracts/fractions/compounds. All the combinations showed toxicity and synergistic activity. Leaf/bark extracts and SO significantly inhibited the AChE and GST activity in A. craccivora. Based on field bio-efficacy, the leaf extract/SO or their combinations can be recommended for the control of aphids.  相似文献   

8.
Essential oils from 20 Egyptian plants were obtained by using hydrodistillation. The chemical composition of the isolated oils was identified by gas chromatograph/mass spectrometer. Fumigant and contact toxicities of the essential oils were evaluated against the adults of Tribolium castaneum. In fumigation assays, the oil of Origanum vulgare (LC50 = 9.97 mg/L air) displayed the highest toxicity towards the adults of T. castaneum. In contact assays, the oils of Artemisia monosperma (LC50 = 0.07 mg/cm2) and O. vulgare (LC50 = 0.07 mg/cm2) were the most potent toxicants against the adults of T. castaneum. Biochemical studies showed that the tested oils caused pronounced inhibition of acetylcholinesterase (AChE) and adenosine triphosphatases (ATPases) isolated from the larvae of T. castaneum. The oil Cupressus macrocarpa (IC50 = 12.3 mg/L) was the most potent inhibitor of AChE, while the oil of Calistemon viminals (IC50 = 4.4 mg/L) was the most potent inhibitor of ATPases.  相似文献   

9.
In searching for novel insecticidal leads, a series of N-pyridylpyrazolo-5-methyl amines and their derivatives were designed and synthesized. Among the 22 target compounds obtained, bioassays indicated that some of the target compounds exhibited good insecticidal activities against Plutella xylostella (P. xylostella) and Spodoptera frugiperda (S. frugiperda). In particular, compound 9j revealed the best insecticidal activity against P. xylostella, with a LC50 value of 22.11 mg/L, and compound 9q had the best insecticidal activity against S. frugiperda which with 73.99% of mortality rate at 100 mg/L. Structure-activity relationship (SAR) analysis showed that 4-CF3 at the position of R1 linked with N-pyridylpyrazole via amide bond could enhance the insecticidal activity of the target compounds. This study provides valuable clues for the further design and optimization of N-pyridylpyrazole derivatives.  相似文献   

10.
The reaction of [(p‐cymene)RuCl2]2 and [Cp*MCl2]2 (M = Rh/Ir) with benzoyl (2‐pyrimidyl) thiourea (L1) and benzoyl (4‐picolyl) thiourea (L2) led to the formation of cationic complexes bearing formula [(arene) M (L1)к2 (N,S) Cl]+ and [(arene) M (L2)к2(N,S)Cl]+ [(arene) = p‐cymene, M = Ru, ( 1 , 4 ); Cp*, M = Rh ( 2 , 5 ) and Ir ( 3 , 6 )]. Precursor compounds reacted with benzoyl (6‐picolyl) thiourea (L3) affording neutral complexes having formula [(arene) M (L3)к1(S)Cl2] [arene = p‐cymene, M = Ru, ( 7 ); Cp*, M = Rh ( 8 ), Ir ( 9 )]. X‐ray studies revealed that the methyl substituent attached to the pyridine ring in ligands L2 and L3 affects its coordination mode. When methyl group is at the para position of the pyridine ring (L2), the ligand coordinated metal in a bidentate chelating N, S‐ mode whereas methyl group at ortho position (L3), it coordinated in a monodentate mode. Further the anti‐cancer studies of the thiourea derivatives and its complexes carried out against HCT‐116, HT‐29 (human colorectal cancer), Mia‐PaCa‐2 (human pancreatic cancer) and ARPE‐19 (non‐cancer retinal epithelium) cell lines showed that the thiourea ligands are inactive but upon complexation, the metal compounds displayed potent and selective activity against cancer cells in vitro. Iridium complexes were found to be more potent as compared to ruthenium and rhodium complexes.  相似文献   

11.
A series of novel imidazo[4,5‐b]pyridine derivatives were designed and synthesized. The structures of all the newly synthesized compounds were identified by spectroscopic data NMR, MS, and elemental analysis. Bioassay showed that the compounds exhibited potent fungicidal activities against Erysiphe graminis, Puccinia polysora, and so forth. Particularly, 2‐chloro‐5‐((5‐methoxy‐2‐(2‐(trifluoromethyl)phenyl)‐3H‐imidazo[4,5‐b]pyridin‐3‐yl)methyl)thiazole ( 9b ) displayed fungicidal potency against Ppolysora. Its EC50 value: 4.00 mg/L is comparable with that of tebuconazole. The structure–activity relationship for the target compounds is discussed.  相似文献   

12.
Two novel amino acids imine ligands (H2L1 and H2L2) have been synthesized using green condensation reaction from 2‐[3‐Amino‐5‐(2‐hydroxy‐phenyl)‐5‐methyl‐1,5‐dihydro‐[1, 2, 4]triazol‐4‐yl]‐3‐(1H‐indol‐3‐yl)‐propionic acid with benzaldehyde/p‐flouro benzaldehyde (1:1 molar ratio) in the presence of lemon juice as a natural acidic catalyst in aqueous medium. Their transition metal complexes have been prepared in a molar ratio (1:1). Characterization of the ligands and complexes using elemental analysis, spectroscopic studies, 1HNMR, 13CNMR, and thermal analysis has been reported. E*, ΔH*, ΔS* and ΔG* thermodynamic parameters, were calculated to throw more light on the nature of changes accompanying the thermal decomposition process of these complexes. The molar conductance measurement of metal complexes showed nonelectrolyte behavior. The metal complexes of the two ligands have tetrahedral geometry with a general molecular structure [M(H2L)Xn], where [(M = Mn (II), Co (II), Cu (II) and Zn (II), X = Cl, n = 2]; M = VO (II), X = SO4, n = 1] for H2L1. [M = Co (II), Cu (II), Zn (II)] for H2L2. Antibacterial activity of the complexes against (Bacillis subtilis, Micrococcus luteus, Escherichia coli), also antifungal activity against (Aspergillus niger, Candida Glabarta, Saccharomyces cerevisiae) have been screened. The results showed that all complexes have antimicrobial activity higher than free ligands. Molecular docking studies results showed that, all the synthesized compounds having minimum binding energy and have good affinity toward the active pocket, thus, they may be considered as good inhibitor of targeting PDB code: 1SC7 (Human DNA Topo‐isomerase I).  相似文献   

13.
《中国化学》2018,36(10):939-944
Forty one novel 1,3,4‐oxadiazole/thiadiazole thioether derivatives containing phenoxy moiety were designed and synthesized. Bioassay demonstrated that some of them showed remarkable activities against Tylenchulus semipenetrans in vitro and in vivo. Compounds 20 , 21 , 35 and 39 showed excellent lethal activities after treatment for 48 h in vitro, with LC50 values of 13.4 ± 1.8, 11.7 ± 2.5, 13.7 ± 2.4 and 13.3 ± 1.1 mg·L–1, respectively, which were obviously superior to fosthiazate (49.1 ± 2.8 mg·L–1) and avermectin (26.6 ± 2.3 mg·L–1). Compound 21 can effectively control the citrus nematode disease caused by T. semipenetrans at 200 mg·L–1 in vivo with (68 ± 3)% inhibitory effect, which was even better than that of avermectin ((63 ± 2)%). The CoMFA and CoMSIA models of three‐dimensional quantitative structure‐activity relationships (3D‐QSARs) were established. The compound 33 was designed based on the 3D‐QSAR models with more vigorous nematicidal activities in vitro (LC50 = 9.8 ± 1.4 mg·L–1) and in vivo ((70 ± 5)%). These results demonstrated that compound 33 can be considered as a potential nematicide.  相似文献   

14.
A new series of quinazolinones containing hydrazone moiety were synthesized, and their inhibitory activities on urease were assessed in vitro. Most of the compounds exhibited potent urease inhibitory activity. Among the synthesized compounds, molecule 4a bearing furan ring has the best inhibitory effect against urease with IC50 = 2.90 ± 0.11 μg/mL. Compounds 4f , 4g , 4h , 4i , and 4j have hydroxy group on phenyl ring. Compound 4i is the most active inhibitor among these compounds with IC50 = 5.01 ± 0.10 μg/mL, which has 3‐Cl and 4‐Br on phenyl ring. Also, newly synthesized compounds had been tested for their antimicrobial effects against three of Gram‐positive bacteria (Bacillus cereus 702 Roma, Staphylococcus aureus ATCC 25923, and Streptococcus pyogenes ATCC 19615) and three of Gram‐negative bacteria (Escherichia coli ATCC 25922, Proteus vulgaris ATCC 13315, and Pseudomonas aeruginosa ATCC 27853). Antimicrobial activity results show that compounds 4a , 4h , 4j , 4f , and 4l have the lowest minimum inhibitory concentration (MIC) value of 1000 μg/mL to all tested bacteria. The other compounds have the MIC value of >1000 μg/mL to all tested bacteria.  相似文献   

15.
A series of novel quinazolinone acylhydrazone derivatives containing the indole moiety were designed, synthesized, and evaluated for their inhibition activities against some important phytopathogens in vitro. Antibacterial experiments indicated that some compounds exhibited remarkable inhibition activities against tested bacteria. Especially, the EC50 values of 7a (EC50 = 55.13 μg/mL against Xoo, EC50 = 56.92 μg/mL against Rs) demonstrated the best antibacterial activities against Xoo and Rs than the other compounds, and the control agents Bismerthiazol (EC50 = 89.80 μg/mL against Xoo) and Thiodiazole copper (EC50 = 189.52 μg/mL against Rs), moreover, compound 7o (EC50 = 50.80 μg/mL) displayed the excellent activity against Xac than the control Bismerthiazol (EC50 = 56.92 μg/mL).  相似文献   

16.
In this study, a series of novel pyrethrin derivatives containing an 1,3,4-oxadiazole thioether moiety were designed and synthesized. Bioassay results revealed that some of the target compounds possessed excellent insecticidal activities against Plutella xylostella (P. xylostella), Vegetable aphids (V. aphids), and Empoasca vitis (E. vitis), respectively. In particular, compound 4l revealed the best insecticidal activities against P. xylostella and V. aphids, with the 50% lethal concentration (LC50) values of 1.78 and 1.61 mg/L, respectively, meanwhile, compound 4k revealed the best insecticidal activity against E. vitis, with the LC50 value of 1.06 mg/L, which were superior to those of the commercial insecticidal agents of chlorpyrifos, beta cypermethrin, spinosad, and azadirachtin. These results indicated that novel pyrethrin derivatives containing an 1,3,4-oxadiazole thioether moiety could effectively inhibit P. xylostella, V. aphids, and E. vitis.  相似文献   

17.
In this study, a total of 31 novel isoxazole derivatives containing bisamide moiety were synthesized and evaluated for their insecticidal activity against Plutella xylostella (Pxylostella). Bioassays indicated that some of the target compounds exhibited good insecticidal activity against Pxylostella. In particular, compound E26 revealed excellent insecticidal activity against Pxylostella, with a 50% lethal concentration (LC50) value of 4.6 μg/mL, which was even better than those of chlorpyrifos (7.7 μg/mL), beta‐cypermethrin (12.8 μg/mL), and azadirachtin (10.2 μg/mL). These results indicated that isoxazole derivatives containing bisamide moiety could be developed as novel and promising insecticides. To the best of our knowledge, it is the first report on the insecticidal activity of this series of novel isoxazole derivatives containing bisamide moiety.  相似文献   

18.
A 3,5-dichlorosalicylaldehyde-N4-cyclohexylthiosemicarbazone (C14H16Cl2N3OS) and its complexes [Zn(dsct)(phen)]·DMF ( 1 ), [Zn(dsct)(bipy)]·DMF ( 2 ), [Cu(dsct)(bipy)]·DMF ( 3 ) (phen = 1,10-phenathroline, bipy = 2,2’bipyridine) were synthesized and characterized by CHN analysis, FT-IR, UV–vis and NMR spectra. The molecular structure of the thiosemicarbazone (H2dsct) and its complexes have been resolved using single crystal XRD studies. In the complexes, thiosemicarbazone exist in the thioiminolate form and acts as dideprotonated tridentate ligand coordinating through phenolic oxygen, thioiminolate sulfur and azomethine nitrogen. The antibacterial activity of the prepared compounds were screened against Escherichia coli, Salmonella typhi, Enterobacter aerogenes, Shigella dysentriae, Bacillus cereus, Staphylococcus aureus. All the complexes showed activity against bacterial strains E.coli and Salmonella typhi. The thiosemicarbazone showed activity against three bacterial strains such as E. coli, Enterobacter aerogenes and Shigella dysentriae. Complex 2 showed very good antibacterial activity as compared to standard drug (Ampicillin) against the bacterial strain, Salmonella typhi. Finally, the thiosemicarbazone and its complexes have been used to accomplish molecular docking studies against an Epidermal Growth Factor Receptor (EGFR) and breast cancer mutant 3hb5-oxidoreductase to determine the most preferred mode of interaction. The results confirm that the complex [Cu (dsct)(bipy)]·DMF( 3 ) showed the highest docking score as compared to other complexes under study. The [Cu(dsct)(bipy)]·DMF( 3 ) complex was evaluated for their anticancer activities against breast cancer cell line (MCF-7) and normal L929 (Mouse Fibroblast) cell line. It was found that the compound showed an LC50 of 6.25 μg/mL against breast cancer cell line (MCF-7).  相似文献   

19.

The present study pertained to biosynthesis, characterization and biomedical application (larvicidal, histopathology, antibacterial, antioxidant and anticancer activity) of Zinc oxide nanoparticles (ZnONPs) from Pleurotus djamor. The synthesized NPs were characterized using spectral and microscopic analyses and further confirmed by UV–Visible spectrophotometer with apeak of 350 nm. The ZnONPs showed strong antioxidant property (DPPH, H2O2 and ABTS+ radical assay) and expressed good larval toxicity against Ae. aegypti and Cx. quinquefasciatus (IVth instar larvae) with the least LC50 and LC90 values (10.1, 25.6 and 14.4, 31.7 mg/l) after 24 h treatment, respectively. We noticed the morphological changes (damaged anal papillae area and the cuticle layers) in the treated larvae. For the antibacterial assay, the highest growth inhibition zone was recorded in C. diphteriae (28.6?±?0.3 mm), followed by P. fluorescens (27?±?0.5 mm) and S. aureus (26.6?±?1.5 mm). The in vitro cytotoxicity assay depicted a significant level of cytotoxic effects (LC50 values 42.26 μg/ml) of ZnONPs against the A549 lung cancer cells, even at low dose. The overall findings of the study suggest that P. djamor had the ability for the biosynthesis of ZnONPs and could act as an alternative biomedical agent for future therapeutic applications in medical avenues.

  相似文献   

20.
Aphis craccivora Koch is a polyphagous and major pest of leguminous crops causing significant damage by reducing the yield. Repeated application of synthetic insecticides for the control of aphids has led to development of resistance. Therefore, the present study aimed to screen the insecticidal activity of root/stem extracts/fractions, and pure molecules from Cissampelos pareira Linnaeus against A. craccivora for identification of lead(s). Among root extract/fractions, the n-hexane fraction was found most effective (LC50 = 1828.19 mg/L) against A. craccivora, followed by parent extract (LC50 = 2211.54 mg/L). Among stem extract/fractions, the n-hexane fraction (LC50 = 1246.92 mg/L) was more effective than the water and n-butanol fractions. Based on GC and GC-MS analysis, among different compounds identified in the n-hexane fraction of root and stem, ethyl palmitate (known to possess insecticidal activity) was present in the highest concentration (24.94 to 52.95%) in both the fractions. Among pure molecules, pareirarineformate was found most effective (LC50 = 1491.93 mg/L) against A. craccivora, followed by cissamine (LC50 = 1556.31 mg/L). Parent extract and fractions of C. pareira possess promising activity against aphid. Further, field bio-efficacy studies are necessary to validate the current findings for the development of botanical formulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号