共查询到20条相似文献,搜索用时 15 毫秒
1.
Yong-Qing Zhao Hoi-Yan Cheung Cai-Ling Xu Hu-Lin Li 《Polymer Degradation and Stability》2010,95(10):1978-1987
Silkworm silk/Poly(lactic acid) (silk/PLA) biocomposites with potential for environmental engineering applications were prepared by using melting compound methods. By means of Dynamic mechanical analysis (DMA), Differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA), Coefficient of thermal expansion test, Enzymatic degradation test and Scanning electron microscopy (SEM), the effect of silk fiber on the structural, thermal and dynamic mechanical properties and enzymatic degradation behavior of the PLA matrix was investigated. As silk fiber was incorporated into PLA matrix, the stiffness of the PLA matrix at higher temperature (70-160 °C) was remarkably enhanced and the dimension stability also was improved, but its thermal stability became poorer. Moreover, the presence of silk fibers also significantly enhanced the enzymatic degradation ability of the PLA matrix. The higher the silk fiber content, the more the weight loss. 相似文献
2.
In this study, the thermal and mechanical properties of biodegradable poly(L ‐lactic acid) (PLA) were improved by reacting with 4,4‐methylene diphenyl diisocyanate (MDI). The resulting PLA samples were characterized with Fourier transformation infrared spectrometer (FT‐IR). The glass transition (Tg) and decomposing (Td) temperature of the resulting products were measured using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), respectively. The tensile properties were also measured with a tensile tester. The results show that when the molar ratio of ? NCO to ? OH was 2:1, the Tg value can be increased to 64°C from the original 55°C, and the tensile strength increased from 4.9 to 5.8 MPa. This demonstrated that by reacting PLA with MDI at an appropriate portion, both the thermal and mechanical performance of PLA can be increased. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
3.
Seog Joo Kang Sung Il Hong Chong Rae Park 《Journal of polymer science. Part A, Polymer chemistry》2000,38(4):775-780
To prepare thermally stable and high‐performance polymeric films, new solvent‐soluble aromatic polyamides with a carbamoyl pendant group, namely poly(4,4′‐diamino‐3′‐carbamoylbenzanilide terephthalamide) (p‐PDCBTA) and poly(4,4′‐diamino‐3′‐carbamoylbenzanilide isophthalamide) (m‐PDCBTA), were synthesized. The polymers were cyclized at around 200 to 350 °C to form quinazolone and benzoxazinone units along the polymer backbone. The decomposition onset temperatures of the cyclized m‐ and p‐PDCBTAs were 457 and 524 °C, respectively, lower than that of poly(p‐phenylene terephthalamide) (566 °C). For the p‐PDCBTA film drawn by 40% and heat‐treated, the tensile strength and Young's modulus were 421 MPa and 16.4 GPa, respectively. The film cyclized at 350 °C showed a storage modulus (E′) of 1 × 1011 dyne/cm2 (10 GPa) over the temperature range of room temperature to 400 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 775–780, 2000 相似文献
4.
“One‐pot” synthesis of crosslinked silicone‐containing macromolecular charring agent and its synergistic flame retardant poly(l‐lactic acid) with ammonium polyphosphate 下载免费PDF全文
Yanyan Guan Xin Wen Hongfan Yang Lipeng Zhang Mingang Li Jing Shao Yunhui Li Tao Tang 《先进技术聚合物》2017,28(11):1409-1417
A crosslinked silicone‐containing macromolecular charring agent (CSi‐MCA) was synthesized via “one‐pot” process, and it was combined with ammonium polyphosphate (APP) to synergistically improve the flame retardancy of poly(l ‐lactic acid) (PLA). The chemical structure of synthesized CSi‐MCA was characterized by Fourier transform infrared spectroscopy and solid‐state 13C nuclear magnetic resonance. The thermal gravimetric analyzer indicated that the CSi‐MCA displayed good thermal stability and high residue via the catalytic crosslinking. Furthermore, the flame retardant effect of CSi‐MCA and APP as intumescent flame retardants in PLA system was investigated by limited oxygen index, UL94, and cone calorimeter test. When the content of CSi‐MCA was 5 wt% and APP was 10 wt% (CSi‐MCA/APP = 1/2), the limited oxygen index value of composites was 33.6 and UL94 classed a V‐0 rating. The peak heat release rate and total heat release of PLA composites containing both APP and CSi‐MCA decreased significantly in comparison with those with APP or CSi‐MCA alone. The flame retardancy mechanism was investigated via analyzing residual chars by scanning electron microscopy and X‐ray photoelectron spectroscopy as well as the possible chemical reaction between APP and CSi‐MCA by thermal gravimetric analyzer and Fourier transform infrared spectroscopy. The results showed that the enhanced flame retardancy was attributed mainly to synergistic effect of CSi‐MCA and APP, which could form a compact, continuous, and protective layer during combustion. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
5.
In the present study, the effects of intumescent flame retardant (IFR) incorporating organically modified montmorillonite (O‐MMT) on the flame retardancy and melt stability of PLA were investigated. The flame‐retardant PLA was prepared using a twin‐screw extruder and a two roll mill. Then, the influence of IFR and MMT on flame retardancy and melt stability was thoroughly investigated by means of limiting oxygen index (LOI), vertical burning test, thermogravimetric analysis, scanning electronic microscopy, melt flow index (MFI), and parallel plate rheological experiments. The experimental results show that the IFR system in combination with MMT has excellent fire retardancy, i.e. the sample could achieve a UL94 V‐0 rating and LOI value increases from 20.1 for pristine PLA to 27.5 for the flame‐retarded PLA. MFI and rheological measurement indicate that O‐MMT significantly enhances the melt stability and suppresses the melt dripping. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
6.
Ione Cendoya Daniel Lpez Angel Alegría Carmen Mijangos 《Journal of Polymer Science.Polymer Physics》2001,39(17):1968-1975
In this article we report on the investigation of the dynamics of poly(vinyl alcohol) (PVA) and PVA‐based composite films by means of dielectric spectroscopy and dynamic mechanical thermal analysis. Once the characterization of pure PVA was done, we studied the effect of a nanostructured magnetic filler (nanosized CoFe2O4 particles homogeneously dispersed within a sulfonated polystyrene matrix) on the dynamics of PVA. Our results suggest that the α‐relaxation process, corresponding to the glass transition of PVA, is affected by the filler. The glass‐transition temperature of PVA increases with filler content up to compositions of around 10 wt %, probably as a result of polymer–filler interactions that reduce the polymer chain mobility. For filler contents higher than 10 wt %, the glass‐transition temperature of PVA decreases as a result of the absorption of water that causes a plasticizing effect. The β‐ and γ‐relaxation processes of PVA are not affected by the filler as stated from both dynamic mechanical thermal analysis and dielectric spectroscopy. Nevertheless, both relaxation processes are greatly affected by the moisture content. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1968–1975, 2001 相似文献
7.
K. Wang S. Y. Yang L. Fan M. Sh. Zhan J. G. Liu 《Journal of polymer science. Part A, Polymer chemistry》2006,44(6):1997-2006
A series of molecular‐weight‐controlled fluorinated aromatic polyimides were synthesized through the polycondensation of a fluorinated aromatic diamine, 1,4‐bis(4′‐amino‐2′‐trifluoromethylphenoxy)benzene, with 4,4′‐oxydiphthalic anhydride in the presence of phthalic anhydride as the molecular‐weight‐controlling and end‐capping agent. Experimental results demonstrated that the resulting polyimides could melt at temperatures of 250–300 °C to give high flowing molten fluids, which were suitable for melt molding to give strong and flexible polyimide sheets. Moreover, the aromatic polyimides also showed good solubility both in polar aprotic solvents and in common solvents. Polyimide solutions with solid concentrations higher than 25 wt % could be prepared with relatively low viscosity and were stable in storage at the ambient temperature. High‐quality polyimide films could be prepared via the casting of the polyimide solutions onto glass plates, followed by baking at a relatively low temperature. The molten behaviors and organosolubility of the molecular‐weight‐controlled aromatic polyimides depended significantly on the polymer molecular weights. Both the melt‐molded polyimide sheets and the solution‐cast polymer films exhibited outstanding combined mechanical and thermal properties. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1997–2006, 2006 相似文献
8.
The elastic constants of poly(L ‐lactic acid) (PLLA) crystals are reported on the basis of a commercial software package and the published crystal structure of the α form. A chain modulus of 36 GPa and a shear modulus of 3 GPa have been obtained for cylindrically symmetric aggregates of perfectly oriented crystals. The helical conformation of the PLLA molecule reduces the stiffness in the chain axis direction because bond rotation plays a significant role in the deformation. X‐ray crystal strain measurements suggest that shear of the α crystal parallel to the helix axis is the easiest mode of deformation, in agreement with the expectations obtained from the low shear modulus of 3 GPa obtained from the theoretical calculations. A combination of small‐ and wide‐angle X‐ray scattering, differential scanning calorimetry, dynamic mechanical thermal analysis, and shrinkage measurements has been used to characterize the structure that develops and the crystal transformation that occurs during fiber processing. The structure that develops during processing very much depends on the crystal transformation, and a structural model is proposed for fibers at different degrees of plastic deformation. The transformation of the α crystal into the β form and vice versa is governed primarily by shear along the helix axis because the chains must shear past each other during the crystal transformation, disrupting the lamellar packing. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 892–902, 2007 相似文献
9.
The use of nano‐biocomposites based on plasticized poly(lactic acid) (PLA) has been proposed as a way to improve the polymer ductility and to expand PLA applications window. Novative nano‐biocomposites were elaborated with PLA plasticized by polyadipates (15 wt%) with different molar masses (from 1500 to 2500 Da), with 2.1 wt% of an organo‐modified montmorillonite (O‐MMT). These materials showed enhanced ductility and barrier properties. The clay was swelled in liquid polyadipates prior to their blending with PLA to facilitate chains intercalation and nanofiller exfoliation during melt‐blending. In certain processing conditions, quite homogenous and exfoliated structures were obtained, as shown by X‐ray diffraction (XRD) and transmission electronic microscopy (TEM) results. Irrespective of the average molar mass of the polyadipate, the clay addition induced a reduction in around 25% in oxygen transmission rate (OTR) without an important detriment in tensile properties. Nano‐biocomposites prepared with higher molar masses polyadipates showed the highest thermal stability as well as the lowest OTR, resulting in very promising and novative materials for different applications such as soft packaging. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
10.
S. M. Pyo S. I. Kim T. J. Shin Y. H. Park M. Ree 《Journal of polymer science. Part A, Polymer chemistry》1999,37(7):937-957
Fully rodlike poly(4,4‐biphenylene pyromellitimide) (PMDA–BZ) is so brittle in spite of its extremely high modulus. In this study, the brittleness was attempted to be improved without a significant sacrifice of the high modulus by incorporating short side groups. For this, benzidine monomers, which contain methyl, methoxy, fluoro, and trifluoromethyl at the 2,2′‐positions, were synthesized and then used for polycondensation reactions with pyromellitic dianhydride in N‐methyl‐2‐pyrrolidone, producing soluble poly(amic acids)s. The synthesized poly(amic acid)s were converted to the fully rodlike polyimides in films by a conventional spin‐coating on substrates, soft bake, and thermal imidization. The brittleness of PMDA–BZ was successfully healed with a small portion of sacrifice in the modulus by incorporating methyl, methoxy, and trifluoromethyl groups but could not be healed by the fluoro side group. The improvement in the brittleness might be contributed from the chain mobility and lateral chain packing order enhanced by the incorporation of the side groups, which are evident on the measured structures and properties. The structure and other properties were detected to be influenced by the incorporated side groups. The detailed structures and properties were interpreted by considering roles of side groups and the correlation between structure and properties, respectively. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 937–957, 1999 相似文献
11.
Poly(lactic acid)‐grafted multiwalled carbon nanotubes (MWNT‐g‐PLA) were prepared by the direct melt‐polycondensation of L ‐lactic acid with carboxylic acid‐functionalized MWNT (MWNT‐COOH) and then mixed with a commercially available neat PLA to prepare PLA/MWNT‐g‐PLA nanocomposites. Morphological, thermal, mechanical, and electrical characteristics of PLA/MWNT‐g‐PLA nanocomposites were investigated as a function of the MWNT content and compared with those of the neat PLA, PLA/MWNT, and PLA/MWNT‐COOH nanocomposites. It was identified from FE‐SEM images that PLA/MWNT‐g‐PLA nanocomposites exhibit good dispersion of MWNT‐g‐PLA in the PLA matrix, while PLA/MWNT and PLA/MWNT‐COOH nanocomposites display MWNT aggregates. As a result, initial moduli and tensile strengths of PLA/MWNT‐g‐PLA composites are much higher than those of neat PLA, PLA/MWNT, and PLA/MWNT‐COOH, which stems from the efficient reinforcing effect of MWNT‐g‐PLA in the PLA matrix. In addition, the crystallization rate of PLA/MWNT‐g‐PLA nanocomposites is faster than those of neat PLA, PLA/MWNT, and PLA/MWNT‐COOH, since MWNT‐g‐PLA dispersed in the PLA matrix serves efficiently as a nucleating agent. It is interesting that, unlike PLA/MWNT nanocomposites, surface resistivities of PLA/MWNT‐g‐PLA nanocomposites did not change noticeably depending on the MWNT content, demonstrating that MWNTs in PLA/MWNT‐g‐PLA are wrapped with the PLA chains of MWNT‐g‐PLA. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
12.
Nanostructures and thermal‐mechanical properties of cyanate ester/epoxy thermosets modified with poly(ethylene oxide)‐poly(propylene oxide)‐poly(ethylene oxide) triblock copolymer 下载免费PDF全文
Phase structures and mechanical properties of epoxy/acryl triblock copolymer alloys using several curing agents were studied. The nanostructured thermosets were obtained at the compositions investigated for every blends studied. The dependence of the morphological structures on block copolymer content and dicyanate ester, 2,2′‐bis(4‐cyanatophenyl) isopropylidene (BCE)/epoxy (EP) ratio for thermosetting blends was interpreted on the basis of the difference in hydrogen bonding interactions and reaction resulting from the cross‐linked network structures of matrixes. Moreover, the effect of F68 (poly(ethylene oxide)‐co‐poly(propylene oxide)‐co‐poly(ethylene oxide) block copolymer) on the curing characteristics and performance of BCE/EP resin was discussed. Results show that the incorporation of F68 cannot only effectively promote the curing reaction of BCE/EP but can also significantly improve the toughness of the cured BCE/EP resin. In addition, the toughening effect of F68/EP is greater than single EP resin. For example, the notched impact strength of systems with BE‐80/20 (B and E being the overall contents of BCE and EP, respectively) modified with 10 wt% F68 showed 55% increase compared with neat BCE/EP resin and even is more than three times of that value for pure BCE resin, 5.9 kJ/cm2. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
13.
A novel polyphosphazene/triazine bi‐group flame retardant in situ doping nano ZnO (A4‐d‐ZnO) was synthesized and applied in poly (lactic acid) (PLA). Fourier transform infrared (FTIR), solid state nuclear magnetic resonance (SSNMR), X‐ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), transmission electron microscope (TEM), and energy dispersive spectrometer (EDS) were used to confirm the chemical structure of A4‐d‐ZnO. The thermal stability and the flame‐retardant properties of the PLA composites were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), limiting oxygen index (LOI), vertical burning test (UL‐94), and micro combustion calorimeter (MCC) test. The results of XPS showed that A4‐d‐ZnO has been synthesized, and the doping ratio of ZnO was 7.2% in flame‐retardant A4‐d‐ZnO. TGA results revealed that A4‐d‐ZnO had good char forming ability (40 wt% at 600°C). The results of LOI, vertical burning test, and MCC showed that PLA/5%A4‐d‐ZnO composite acquired a higher LOI value (24%), higher UL94 rating, and lower pk‐HRR (501 kW/m2) comparing with that of pure PLA. It indicated that a small amount of flame‐retardant A4‐d‐ZnO could achieve great flame‐retardant performance in PLA composites. The catalytic chain scission effect of A4‐d‐ZnO could make PLA composites drip with flame and go out during combustion, which was the reason for the good flame‐retardant property. Moreover, after the addition of A4‐d‐ZnO, the impaired mechanical properties of PLA composites are minimal enough. 相似文献
14.
Preparation and characterization of benzoyl‐hydrazide‐derivatized poly(lactic acid) and γ‐cyclodextrin inclusion complex and its effect on the performance of poly(lactic acid) 下载免费PDF全文
A nucleating agent, benzyl‐hydrazide‐derivatized poly(lactic acid) (PLA) and γ‐cyclodextrin inclusion complex (PLA‐IC‐BH), was synthesized through a series of reactions. Poly(lactic acid) and γ‐cyclodextrin inclusion complex (PLA‐IC) was first obtained by ultrasonic co‐precipitation, which was then subjected to carboxylation, acylation, and amidation using benzoyl hydrazine and thionyl chloride. The composition and structure of PLA‐IC‐BH was confirmed by 1H nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and X‐ray diffraction. PLA/PLA‐IC‐BH composites were prepared by melt blending and a hot‐press forming process. Mechanical properties, thermal stabilities, and crystallization behaviors of PLA/PLA‐IC‐BH samples were investigated by thermogravimetric analysis, differential scanning calorimetry (DSC), polarized optical microscopy (POM), rheological analysis, and so on. Mechanical testing and thermogravimetric analysis showed that the tensile strengths, impact properties, and thermal stabilities of PLA/PLA‐IC‐BH composites were improved significantly compared to pure PLA and PLA/PLA‐IC. DSC results showed that crystallinity of PLA was increased from 5.17% to 38.93% after introduction of PLA‐IC‐BH. POM results showed that PLA‐IC‐BH acted as a nucleating agent for PLA and enhanced its crystallization rate. Rotational rheological behaviors of PLA/PLA‐IC‐BH demonstrated that incorporation of PLA‐IC‐BH increased the rigidity of the network structure of the PLA matrix. Compared to those of PLA, the maximum torque and apparent viscosity of PLA/PLA‐IC‐BH composites were increased by 55.56% and 25.59%, respectively. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
15.
Antimicrobial active films based on poly(lactic acid) (PLA) were prepared with poly(ε‐caprolactone) (PCL) and thymol (0, 3, 6, 9, and 12 wt%) by solvent casting methods. The films were characterized by thermal, structural, mechanical, gas barrier, and antimicrobial properties. Scanning electron microscopy analysis revealed that the surface of film became rougher with certain porosity when thymol was incorporated into the PLA/PCL blends. Thymol acted as plasticizers, which reduce the intermolecular forces of polymer chains, thus improving the flexibility and extensibility of the films. The addition of PCL into the pure PLA film decreased the glass transition temperature of the films. The presence of thymol decreased the crystallinity of PLA phase, but did not affect the thermal stability of films. Water vapor barrier properties of films slightly decreased with the increase of thymol loading. The antimicrobial properties of thymol containing films showed a significant activity against Escherichia coli and Listeria monocytogenes. The results indicated the potential of PLA/PCL/thymol composites for applications in antimicrobial packaging. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
16.
Chin‐Ping Yang Ruei‐Shin Chen Ming‐Jui Wang 《Journal of polymer science. Part A, Polymer chemistry》2002,40(8):1092-1102
A novel tetraimide dicarboxylic acid was synthesized with the ring‐opening addition of 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride, 4,4′‐oxydianiline, and trimellitic anhydride in a 1/2/2 molar ratio in N‐methyl‐2‐pyrrolidone followed by azeotropic condensation to tetraimide dicarboxylic acid. A series of poly(amide imide imide)s (PAIIs) with inherent viscosities of 0.8–1.1 dL/g were prepared from tetraimide dicarboxylic acid with various aromatic diamines by direct polycondensation. Most of the PAIIs were readily soluble in a variety of amide polar solvents and even in less polar m‐cresol and pyridine. Solvent‐cast films had tensile strengths ranging from 99 to 106 MPa, elongations at break ranging from 8 to 13%, and initial moduli ranging from 2.0 to 2.3 GPa. The glass‐transition temperatures of these PAIIs were recorded at 244–276 °C. They had 10% weight losses at temperatures above 520 °C in air or nitrogen atmospheres. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1092–1102, 2002 相似文献
17.
Minoru Nagata Sigeki Hizakae 《Journal of polymer science. Part A, Polymer chemistry》2003,41(19):2930-2938
4,4′‐(Adipoyldioxy)dicinnamic acid (CAC) was synthesized by a condensation of adipoyl chloride and 4‐hydroxycinnamic acid. The CAC6 copolymers were prepared by a high‐temperature solution polycondensation of a diacyl chloride of CAC, 1,6‐hexanediol (6), and poly(ethylene glycol) (PEG) in which the molecular weights of PEG are 1000, 2000, and 8300. Differential scanning calorimetric curves of the copolymers exhibited a glass‐transition temperature because of PEG moiety and two melting endotherms (Tm's); the one at the higher Tm was due to CAC6 moiety, and the other at the lower Tm was due to PEG moiety, suggesting that these copolymers are the block type. The incorporation of the PEG component decreased the tensile strength and initial modulus, but increased the elongation extremely. The enzymatic degradation was performed in phosphate buffer solution (pH 7.2) with Ps. cepacia lipase at 37 °C. The degradation rate of the copolymers increased significantly with an increasing content of PEG, which was correlated to the water absorption of the copolymers. All copolymers could undergo photocuring by ultraviolet (UV) light irradiation (λ > 280 nm) at ambient temperature, as examined by UV spectroscopy and solubility. The CAC6/E2000(50/50) film photocured for 3 min exhibited a good elastic property with a maximum tensile strength of 3.7 MPa and maximum elongation of 640%. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2930–2938, 2003 相似文献
18.
The effect of liquid–liquid phase‐separation (LLPS) on the crystallization behavior and mechanical properties of poly(ethylene‐ran‐vinyl acetate) (EVA) with various amounts of vinyl acetate and paraffin wax blend was investigated. The blend of EVA‐H (9.5% vinyl acetate) and the wax became homogeneous at temperatures greater than its upper critical solution temperature (UCST) (98°C), and an LLPS was observed between UCST and the melting point of 88°C for EVA‐H in the blend. The existence of the LLPS is attributed to the relatively large amount of the hydrophilic component of vinyl acetate in EVA, although the molecular weight of the wax was just 560. However, LLPS did not occur for the EVA/wax blend when the content of vinyl acetate in EVA was less than 3%. This behavior was explained by using the Flory–Huggins lattice model with an effective interaction parameter. The degree of crystallinity of EVA‐H in the EVA‐H/wax blend, judged from a melting endothermic peak in differential scanning calorimeter (DSC) thermograms obtained during heating runs, decreased with increasing duration time in the LLPS region. The flexural modulus of the EVA/wax blend became maximum at certain blend composition (about 30 ∼ 40 wt % EVA depending upon the amount of vinyl acetate). This behavior can be explained by the fact that this blend composition has the largest relative degree of crystallinity of EVA measured by DSC and wide‐angle X‐ray scattering method. We found that the flexural modulus of the binder itself is directly related to that of a feedstock consisting of larger amounts of metal powder and the binder, which can help someone to develop a suitable binder system for a powder injection molding process. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1991–2005, 1999 相似文献
19.
A series of isomeric poly(thioether ether imide)s (PTEIs) containing both thioether and ether linkages were prepared by nucleophilic substitution reaction of isomeric bis(chlorophthalimide)s with 4,4′‐thiobisbenzenethiol. The inherent viscosities of these polymers were in the range of 0.40–0.56 dL/g in m‐cresol at 30°C. The Tg values of PTEIs were 196–236°C; T5% values reached up to 509–529°C in nitrogen and 508–534°C in air, which indicated this kind of polyimide possessed excellent thermal stability. The hydrolytic stability was arranged in the order: a > b > c > d > e, and improved with increasing the content of 3‐substituted phthalimide unit in the polymer backbone. Flexible films could be cast from the polymer solution with a solid content of 10%. The PTEI films exhibited good mechanical properties with tensile strengths of 90–104 MPa, elongations at break of 6.6–7.9%, and tensile moduli of 2.3–2.6 GPa. The minimum complex viscosity of PTEIs c was about 100 Pa·s at 310°C and the minimum melt viscosity of PTEIs (a–e) decreased with increasing the content of unsymmetrical 3,4′‐substituted phthalimide units. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
20.
Synthesis and studies of thermal,mechanical and electrical properties of MWCNT–cyclodextrin as a nanoparticle in polyamide matrix based on 2,2‐Bis[4‐(4‐aminophenoxy)phenyl] propane 下载免费PDF全文
In the present research, polyamide (PA) ( 6 ) was synthesized by the polycondensation reaction of 2,2‐Bis[4‐(4‐aminophenoxy)phenyl] propane as a diamine ( 4 ) with adipic acid ( 5 ) in the optimized condition. The resulting PA was characterized using Fourier transform infrared spectroscopy, Proton Nuclear Magnetic Resonance (1H NMR) spectroscopy, inherent viscosity (ηinh), X‐ray diffraction, and solubility tests. Also, the thermal property of the new PA ( 6 ) was investigated by using Thermogravimetric analysis. To apply multiwall carbon nanotube (MWCNT) as an effective reinforcement in polymer composites, it is essential to have appropriate proper dispersion, interfacial adhesion between the MWCNT and polymer matrix, and increasing solubility. With this end particularly, functionalized MWCNTs were combined with a soluble molecule, and a series of modified MWCNT with cyclodextrin (Cy) known as PA/MWCNT‐Cy composite film (2, 5, and 8 wt%) were prepared by a solution intercalation technique. Field emission scanning electron microscopy images showed that MWCNT‐Cy was well dispersed in the PA matrix. Thermogravimetric analysis indicated an increase in thermal stability of nanocomposites as compared with the pristine PA. Anisotropic structure of the synthesized films and dispersed MWCNT‐Cy in the films approved by use of X‐ray diffraction and field emission scanning electron microscopy. The resultant PA/MWCNT‐Cy composite films were electrically conductive, which is favorable for many practical uses. Measurements of mechanical properties of these composite films showed high strength in 8% MWCNT‐Cy content. Also, results showed increases in Young's modulus and tensile strength. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献