共查询到9条相似文献,搜索用时 0 毫秒
1.
Naomi Mizuno Kotaro Satoh Masami Kamigaito Yoshio Okamoto 《Journal of polymer science. Part A, Polymer chemistry》2006,44(21):6214-6225
This study was directed toward the cationic polymerization of tetrahydroindene (i.e., bicyclo[4.3.0]‐2,9‐nonadiene), a bicyclic conjugated diene monomer, with a series of Lewis acids, especially focusing on the synthesis of high‐molecular‐weight polymers and subsequent hydrogenation for novel cycloolefin polymers with high service temperatures. EtAlCl2 or SnCl4 induced an efficient and quantitative cationic polymerization of tetrahydroindene to afford polymers with relatively high molecular weights (number‐average molecular weight > 20,000) and 1,4‐enchainment bicyclic main‐chain structures. The subsequent hydrogenation of the obtained poly(tetrahydroindene) with p‐toluenesulfonyl hydrazide resulted in a saturated alicyclic hydrocarbon polymer with a relatively high glass transition (glass‐transition temperature = 220 °C) and improved pyrolysis temperature (10% weight loss at 480 °C). The new diene monomer was randomly copolymerized with cyclopentadiene at various feed ratios in the presence of EtAlCl2 to give novel cycloolefin copolymers, which were subsequently hydrogenated into alicyclic copolymers with variable glass‐transition temperatures (70–220 °C). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6214–6225, 2006 相似文献
2.
The thermal behavior of a series of polybenzoxazines based on 3‐aminophenylacetylene has been investigated. The effect of reactive amine on the thermal cleavage of the Mannich base is examined under both inert and oxidative environments. It has been shown that the thermal stability of polybenzoxazines is substantially improved by the reactive amine. Various biphenols are found to have insignificant effect on the thermal stability of this series of polybenzoxazines. These nitrogen containing phenolic resins are nonflammable polymers. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 647–659, 1999 相似文献
3.
Tarek Agag Tsutomu Takeichi 《Journal of polymer science. Part A, Polymer chemistry》2007,45(10):1878-1888
Novel high‐molecular‐weight polybenzoxazine precursors, namely AB‐type benzoxazine precursors, were synthesized from aminophenols and formaldehyde. Both 1H NMR and IR confirmed the structure of the precursors, indicating the presence of a cyclic benzoxazine structure in the backbone of the precursors. The weight‐average molecular weight was estimated by size exclusion chromatography to be to in the range of 1300–4500. The precursors gave self‐standing thin films when their solutions were cast in dioxane over glass plates and dried, and upon a gradual thermal cure up to 250 °C, they afforded polybenzoxazine films. The viscoelastic analyses showed that the glass transition temperatures of the polybenzoxazine films obtained from these novel precursors were as high as 260–300 °C. Thermogravimetric analysis results indicated that the onset of decomposition and the char yield of the thermosets derived from these AB‐type precursors were higher than those of traditional polybenzoxazine. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1878–1888, 2007. 相似文献
4.
5.
The flame retardancy and heat resistance of a phenol-biphenylene-type epoxy resin compound, which forms a self-extinguishing network structure, were increased by the inclusion of a benzoguanamine-modified phenol biphenylene resin. The benzoguanamine-modified phenol biphenylene resin contains a benzoguanamine unit to release non-flammable nitrogen substances during ignition and to increase the resin's reactivity toward epoxy resins, and biphenylene units to keep the resin's thermal degradation and water resistance. The addition of the benzoguanamine-modified phenol biphenylene resin in the epoxy resin compound improved the epoxy resin compound's flame retardancy and heat resistance, and also increased its glass transition temperature while maintaining its water resistance and mechanical properties. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
6.
7.
Dimeng Wu Yongchao Zhao Ke Zeng Gang Yang 《Journal of polymer science. Part A, Polymer chemistry》2012,50(23):4977-4982
A novel benzimidazole‐containing phthalonitrile monomer (BIPN) was synthesized. The chemical structure of BIPN was confirmed by various spectroscopic techniques. Differential scanning calorimetry measurement revealed that the self‐promoted polymerization reaction of the BIPN proceeds extremely sluggish and showed low polymerization exothermic effect. Subsequent rheological measurement displayed that the BIPN was able to keep a stable and low melt viscosity for 4 h at 300 °C, 2 h at 310 °C, and 50 min at 330 °C. The derived BIPN polymers showed excellent thermal properties revealed by thermogravimetric analysis, which were better than those of the corresponding polymer derived from phthalonitrile monomer without benzimidazole moiety. IR analysis confirmed the occurrence of the triazine ring within the polymer crosslinking sites. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
8.
In this study, tough and high heat‐resistant poly (vinyl chloride) (PVC)/poly (α‐methylstyrene–acrylonitrile) (α‐MSAN) blends (70/30) containing acrylic resin (ACR) as a toughening modifier was prepared. With the addition of ACR, heat distortion temperature increased slightly, which corresponded with the increase in glass transition temperature measured by differential scanning calorimetry and dynamic mechanical thermal analysis. Thermogravimetric analysis showed that addition of ACR improved the thermal stability. With regard to mechanical properties, tough behavior was observed combined with the decrease in tensile strength and flexural strength. A brittle‐ductile transition (BDT) in impact strength was found when ACR content increased from 8 to 10 phr. The impact strength was increased by 34.8 times with the addition of 15 phr ACR. The morphology correlated well with BDT in impact strength. It was also suggested from the morphology that microvoids and shear yielding were the major toughening mechanisms for the ternary blends. Our present study offers insight on the modification of PVC, since combination of α‐MSAN and ACR improves the toughness and heat resistance of pure PVC simultaneously. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
9.
Manoj K. Kolel‐Veetil Dawn D. Dominguez Christopher A. Klug Kenan P. Fears Syed B. Qadri Daniel Fragiadakis Teddy M. Keller 《Journal of polymer science. Part A, Polymer chemistry》2013,51(12):2638-2650
Structural isomers of thermo‐oxidatively stable poly(carborane‐siloxane‐arylacetylene) (PCSAA), namely, m‐PCSAA and p‐PCSAA, were synthesized by the reaction of the dimagnesium salts of m‐diethynylbenzene or p‐diethynylbenzene with 1,7‐bis(chlorotetramethyldisiloxyl)‐m‐carborane. The developed polymers have exceptional thermo‐oxidative properties similar to their diacetylene counterpart poly(carborane‐siloxane‐acetylene), PCSA. Thermal treatment of either of the PCSAAs results in a fully crosslinked thermoset by 500 °C resulting from the cycloaddition reactions involving the acetylene and aryl functionalities and subsequent formation of bridging disilylmethylene entities as discerned from Fourier transform infrared, 13C and 29Si solid‐state NMR, and XPS studies. X‐ray diffraction analysis revealed that the thermosets obtained from p‐PCSAA possess enhanced crystallinity when compared to that obtained from m‐PCSAA possibly due to more efficient packing interactions of the p‐diethynylbenzene groups during thermoset formation. The presence of the aryl groups in the backbone of the PCSAAs' chains appeared to have enhanced the storage and bulk moduli of their thermosets when compared to the thermoset of PCSA. Dielectric studies of m‐PCSAA and p‐PCSAA revealed segmental relaxation peaks, α, above their glass transition temperatures with p‐PCSAA exhibiting a broader peak with a slower relaxation rate than m‐PCSAA. © 2013 Wiley Periodicals, Inc.? J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2638–2650 相似文献