首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
生物质炭基固体酸催化剂的制备   总被引:6,自引:0,他引:6  
 以生物质木粉为原料, 采用炭化-磺化法制备了炭基固体酸催化剂, 并用于油酸与甲醇的酯化反应, 考察了制备条件对炭基固体酸催化剂活性的影响. 采用 X 射线衍射、红外光谱、热重分析、高分辨透射电子显微镜及元素分析等手段对催化剂进行了表征. 结果表明, 由生物质木粉制备的炭基固体酸催化剂具有较高催化酯化反应活性, 在 400 oC 下炭化 0.5 h, 135 oC 下磺化 1 h 制备的炭基固体酸催化剂在精馏分水连续酯化装置中催化油酸与甲醇的酯化反应 2 h 时, 酯化转化率达到 96%. 采用炭化-磺化法制备的生物质炭基固体酸催化剂具有蠕虫状的无序乱层炭结构, 磺酸基 (-SO3H) 含量高达 13.25%, 并且在 220 oC 以下时具有良好的热稳定性.  相似文献   

2.
Kinetics of esterification of acrylic acid with ethanol in the presence of homogeneous (H2SO4, HCl, p‐TSA, HI) catalysts as well as heterogeneous catalysts (Dowex 50WX, Amberlyst 15) was studied. The effects and performance of these catalysts on the conversion of acrylic acid were evaluated. In the kinetics of homogeneous catalyzed reaction, both concentration and activity‐based model were employed. Activity coefficients were predicted by the Universal Functional group Contribution (UNIFAC) method to consider nonideal behavior of the liquid phase. The heterogeneous catalyzed reaction mechanisms were developed using Eley–Rideal theory. The model results were compared with the experimental results and were in good agreement. The temperature dependency of the constants, reaction enthalpy, and entropy, and activation energy were determined. The conversion of acrylic acid was obtained as 63.2%, 61.02%, 53.3%, 21.4%, 34.96%, and 14.84% for H2SO4, p‐TSA, HCl, HI, Dowex 50WX, and Amberlyst 15, respectively, under process temperature of 70°C, reactant molar ratio of 1:1, and catalyst concentration of 2% (v/v) for homogeneous and 2.17 g for heterogeneous catalyst. These outcomes provide an approach to understand the significant effect of each catalyst on the esterification kinetics of acrylic acid and ethanol.  相似文献   

3.
A new heterogeneous Brønsted solid acid catalyst was prepared by tandem post-functionalization of MIL-101(Cr) and utilized for acetic acid esterification and alcoholysis of epoxides under solvent-free conditions. First, MIL-101(Cr) was functionalized with pyrazine to achieve MIL-101(Cr)-Pyz. Afterwards, the nucleophilic reaction of MIL-101(Cr)-Pyz with 1,3-propane sultone and next acidification with diluted sulfuric acid gave MIL-101(Cr)-Pyz-RSO3H Brønsted solid acid catalyst. Various characterization methods such as Fourier transformation infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), elemental analysis (CHNS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy-dispersiveX-ray(EDX) spectroscopy, thermal analysis (TGA/DTA), acid–base titration, and N2 adsorption/desorption analysis were employed to fully characterize the prepared catalyst. The catalyst showed high activity compared to unmodified MIL-101(Cr) in both catalytic acetic acid esterification and alcoholysis of epoxides. It can also be readily isolated from the reaction mixture and reused three times without major decrease in its activity.  相似文献   

4.
A MnO2/CdTiO3 is prepared by a simple chemical method. The organic compound such as antibiotics is a contaminant found in large amounts in pharmaceutical industrial wastewater. Pharmaceutical compounds are toxic. The nano‐product was characterized by SEM, XRD, XPS, DLS and UV–vis DRS revealed that the MnO2 nanoparticles were supported on the CdTiO3 surface. The crystallite size was found as 72.11 nm, and 38.13 nm for CdTiO3, and MnCdTi‐1 nanocomposites, respectively. The prepared catalyst was used for photo‐degradation of cephalexin under UV light irradiation. The result implies the complete degradation of cephalexin was carried out at 80 min for MnCdTi‐2 nanocomposites (88.88%) due to this catalyst has the lowest band gap compared to the other catalyst. The MnO2/CdTiO3 was selected for fungicidal and bactericidal efficiency against Aspergillus flavus, and candida albicans and Escherichia coli, and Staphylococcus aureus. The MnO2/CdTiO3–2 has great activity is compared with the other MnO2/CdTiO3–0 and MnO2/CdTiO3–1 samples.  相似文献   

5.
Monoammonium salt of 12‐tungstophosphoric acid [(NH4)H2PW12O40] was found to be a practical and useful heterogeneous catalyst for an efficient and selective esterification of aliphatic carboxylic acids with alcohols in the presence of aromatic carboxylic acids. The heteropoly acid–based heterogeneous catalyst has the advantages of a simple workup procedure, water insolubility, and good activity.  相似文献   

6.
Design, synthesis and characterization of nano Fe3O4@meglumine sulfonic acid as a new solid acid catalyst for the simple and green one pot multicomponent synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones was studied. New solid acid catalyst was prepared through a clean and simple protocol and characterized using FTIR, VSM, TGA, SEM, elemental analysis (CHN) and XRD techniques. Heterogenization of homogeneous catalyst as a green approach is a useful method for enhancing the efficiency of catalyst. Presented study was a new method for attachment of homogeneous highly soluble catalyst (meglumine sulfate) to the magnetite nanoparticle surfaces for preparing a heterogeneous and effective catalyst. Obtained heterogeneous and reusable solid acid catalyst has high performance in the synthesis of Biginelli compounds. The reaction was performed under microwave irradiation as a rapid and green condition. Easy work up as well as excellent yield (90–98%) of products in short reaction times (40–200 s) and reusable catalyst are the main advantages of presented procedure. Reaction products were characterized in details using physical and chemical techniques such as melting point, 1H NMR, 13C NMR and FTIR.  相似文献   

7.
Two new coordination polymers, {[Cd2(btc)(2,2′‐bpy)2] · H2O}n ( 1 ) and [Zn2(btc)(2,2′‐bpy)(H2O)]n ( 2 ) (H4btc = biphenyl‐2,2′,4,4′‐tetracarboxylic acid, 2,2′‐bpy = 2,2′‐bipyridine), were synthesized hydrothermally under similar conditions and characterized by elemental analysis, IR spectra, TGA, and single‐crystal X‐ray diffraction analysis. In complexes 1 and 2 , the (btc)4– ligand acts as connectors to link metal ions to give a 2D bilayer network of 1 and a 3D metal‐organic framework of 2 , respectively. The differences in the structures are induced by diverging coordination modes of the (btc)4– ligand, which can be attributed to the difference metal ions in sizes. The results indicate that metal ions have significant effects on the formation and structures of the final complexes. Additionally, the fluorescent properties of the two complexes were also studied in the solid state at room temperature.  相似文献   

8.
This study aims to develop highly efficient, recyclable solid catalysts for the epoxidation of vegetable oils. An Al2O3–ZrO2–TiO2 solid acid catalyst was prepared by a co‐precipitation/impregnation method and characterised through scanning electron microscopy, energy‐dispersive spectroscopy, X‐ray diffraction, X‐ray photoelectron spectroscopy, Fourier‐transform infrared and nitrogen adsorption–desorption analyses. The solid acid catalyst with a high surface area and typical slit pore adsorption was successfully synthesised. Al2O3–ZrO2–TiO2 also exhibits high stability and improved catalytic efficiency in the epoxidation of soybean oil. An oil conversion rate of 86.6%, which is higher than that of conventional catalysts, was obtained with a catalyst loading of 0.8 wt% and was maintained at 76.6% even after recycling the catalyst three times. The performance of the solid catalyst was slightly superior to that of H2SO4. Therefore, this novel catalyst may potentially be applicable in catalysing soybean oil epoxidation.  相似文献   

9.
A series of hydrotalcite-like compounds with various Cu:Mg:Al molar ratios were prepared by the co-precipitation method. The catalytic performance for oxidative esterification of aldehydes was investigated. X-ray diffraction, N2 adsorption–desorption (BET), hydrogen temperature-programmed reduction (H2-TPR), X-ray photoelectron spectroscopy, the scanning electron microscope (SEM), the transmission electron microscope and atomic absorption spectrometry were used to characterize the catalysts. The results showed that the benzyl benzoate product was obtained in good to excellent yield using tert-butyl peroxybenzoate as oxidant at 90°C under air atmosphere over Cu2Mg1Al1-LDH catalyst. The catalyst can be recovered and used with 45% conversion after recycling five times. The oxidative esterification reaction in the heterogeneous system is environmentally friendly.

The Cu2Mg1Al1-LDH catalyst prepared by co-precipitation method showed high catalytic activity for oxidative esterification of aldehydes. 81.0% yield of benzyl benzoate with benzaldehyde and toluene as reactants was obtained using tert-butyl peroxybenzoate as oxidant at 90°C under air atmosphere over Cu2Mg1Al1-LDH catalyst. The catalyst can be recovered and used with 45% conversion after recycling five runs. The oxidative esterification reaction in the heterogeneous system is environmentally friendly.  相似文献   

10.
In this work, a new Fe3O4/AlFe/Te nanocomposite was synthesized by a one‐step sol–gel method. The Fe3O4 magnetic nanoparticles (MNPs) were prepared and then mixed with aluminum telluride (Al2Te3) in an alkali medium to produce the desired catalyst. After characterization of the Fe3O4/AlFe/Te nanocomposite by SEM, TEM, EDS, XRD, and ICP analyses, it was used in the esterification reaction. This heterogeneous catalyst showed high catalytic activity in the esterification of commercially available carboxylic acids with various alcohols to produce the desired esters at high conversions under neat conditions. The Fe3O4/AlFe/Te nanocomposites were separated from the reaction mixture via an external magnet and re‐used 8 times without significant loss of catalytic activity.  相似文献   

11.
A novel material ZrO2/SiO2 was synthesized on SiO2 support by means of electrostatic self‐assembly technique and sol‐gel method. After treating this material with 0.7 mol·L?1 H2SO4, a nanostructural solid superacid catalyst SO42?‐ZrO2/SiO2 was prepared. The material was characterized by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), Brunauer Emmett Teller method (BET) and Hammett indicator method. The catalytic activity of the catalyst was carried out for the esterification between acetic acid and butanol. Results show that the catalytic activity of this catalyst was much higher than that of powdered superacid catalyst SO42?/ZrO2. Due to the SiO2 spherical support, the solid superacid catalyst could be separated and recovered easily. The nanostructural ZrO2/SiO2 will be a promising material for the chemical industry in the future.  相似文献   

12.
以羧甲基纤维素钠(CMC)与硫酸铁螯合反应生成的螯合物为碳前驱体,以浓硫酸为磺化试剂,制备新型碳基固体酸催化剂。采用红外(FT-IR)、X射线衍射(XRD)、吡啶红外、扫描电子显微镜(SEM)、热重分析仪(TGA)、能谱仪(EDS)对催化剂进行表征。结果表明,该催化剂同时具有Brønsted和Lewis酸位点,是具有双酸位的碳基固体酸催化剂。将其应用到油酸与甲醇的酯化反应制备生物柴油体系中,考察了不同反应条件对油酸转化率的影响。在反应温度为70℃,反应时间为6h,油酸与甲醇物质的量比为1:10,催化剂用量为油酸质量7.5%条件下,油酸的转化率可达到96.8%。此外,对该催化剂的稳定性进行研究发现该催化剂有着良好的重复使用性和疏水性。  相似文献   

13.
By reaction of CuCl2 with H4btc (H4btc = 1,2,4,5‐benzenetetracarboxylic acid) in mixed N,N‐dimethylformamide (DMF) and methanol solution, a new two‐dimensional (2‐D) copper(II) complex [Cu(btc)0.5(DMF)]n ( 1 ) based on the paddlewheel‐like [Cu2(‐CO2)4(DMF)2] building blocks has been synthesized, which is different from those previous Cu‐btc(II) coordination polymers obtained in water medium. Four carboxylate groups of (btc)4? anion in 1 consistently exhibit bidentate bridging coordination mode, affording an unusual coordination mode of (btc)4?. Further analysis indicates C–H···π weak interactions are the primary driving forces to assemble the 2‐D layers of 1 into a 3‐D packing structure.  相似文献   

14.
《Comptes Rendus Chimie》2017,20(8):818-826
An efficient heterogeneous acid catalyst was developed using cenospheres, a byproduct of coal-fired thermal power plants by the method of wet impregnation. Catalyst characterization was carried out using various analytical techniques, namely, Fourier transform infrared, X-ray diffraction, field emission gun scanning electron microscopy and Brunauer–Emmett–Teller surface area and surface acidity analysis. The characterization revealed the excellent catalytic activity of the catalyst for the esterification reaction of n-octanol and acetic acid. Various reaction parameters, namely, catalyst loading, a molar ratio of alcohol/acid and reaction temperature were evaluated and optimized by response surface methodology using the Box–Behnken model. The response surface methodology model equations corresponding to the conversion of acid and % yield of ester were developed. The model well predicted the optimal reaction conditions, which were validated experimentally with good agreement. The excellent catalytic performance was observed in the esterification reaction with high conversion of acid (95.34%) and high yield of n-octyl acetate (94.81%). Reusability study of the catalyst showed that the catalyst could be used efficiently up to three reaction cycles. This study explores the use of cenospheres to prepare a solid acid catalyst for the industrially important esterification reactions.  相似文献   

15.
A new solid acid catalyst, consisting of 12‐phosphotungstic heteropoly acid (HPW) supported on graphene oxide/silica nanocomposite (GO@SiO2), has been developed via immobilizing HPW onto an amine‐functionalized GO/SiO2 surface through coordination interaction (GO@SiO2‐HPW). The GO@SiO2‐HPW nanocomposite was characterized by Fourier transform infrared (FT‐IR) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and powder X‐ray diffraction (XRD). The prepared nanocomposite could be dispersed homogeneously in water and further used as a heterogeneous, reusable, and efficient catalyst for the synthesis of benzimidazoles and benzothiazoles by the reaction of 1,2‐phenelynediamine or 2‐aminothiophenol with different aldehydes.  相似文献   

16.
FDU-15-SO3H, a solid acid material prepared from the sulfonation of FDU-15 mesoporous polymer, has been demonstrated to serve as an efficient catalyst in the esterification of palmitic acid with methanol as well as in the transesterification of fatty acid-edible oil mixture. FDU-15-SO3H achieved an acid conversion of 99.0% when the esterification was carried out at 343 K with a methanol/palmitic acid molar ratio of 6:1 and 5 wt% catalyst loading. It was capable of giving 99.0% yield of fatty acid methyl esters (FAME) when the transesterification of soybean oil was performed at 413 K and the methanol/oil weight ratio of 1:1. FDU-15-SO3H was further applied to the transesterification/esterification of the oil mixtures with a varying ratio of soybean oil to palmitic acid, which simulated the feedstock with a high content of free fatty acids. The yield of FAME reached 95% for the oil mixtures containing 30 wt% palmitic acid. This indicated the sulfonated mesopolymer was a potential catalyst for clean synthesis of fuel alternative of biodiesel from the waste oil without further purification.  相似文献   

17.
利用磷钨酸(PTA)与1,2,3-三氮唑-4,5-二羧酸(TDA)在水溶液中的反应,合成了一种新的固体酸TDA-PTA,采用X射线粉末衍射(XRD)、扫描电镜(SEM)、红外光谱(FT-IR)、热重(TG)以及电位滴定等方法对其进行了表征,并以油酸与甲醇的酯化反应为探针反应,考察了其催化性能,探讨了催化剂用量、醇酸物质的量比、反应时间、反应温度以及催化剂重复利用次数等对产物收率的影响。结果表明,TDA-PTA不仅保留有磷钨酸典型的Keggin结构,而且具有较强的酸强度;经修饰后,催化剂具有规整的球形形貌,比表面积明显大于磷钨酸;TDA-PTA在油酸与甲醇的酯化反应中表现出了优良的催化活性,尤其显示出好的重复利用性,六次使用后,仍得到86.8%的油酸甲酯产率,催化剂的物相以及Keggin结构没有明显变化。  相似文献   

18.
《Comptes Rendus Chimie》2017,20(5):540-548
Novel solid acid catalysts synthesized from aluminum phosphate were prepared via a precipitation method and a subsequent sulfating treatment. Their catalytic performances for the esterification of propanoic acid with n-butanol were investigated. The as-prepared catalysts were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen adsorption–desorption, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), temperature programmed desorption of ammonia (NH3-TPD), infrared spectroscopy of adsorbed pyridine, and other techniques. Experimental results of esterification reactions indicated that the calcination temperature can significantly affect the catalytic performances and the catalyst calcined at 500 °C (SO42−/AlPO4-500) exhibited the highest activity. The effects of different reaction conditions including reaction time, reaction temperature, catalyst amount and alcohol/acid molar ratio were studied in detail. The maximum propanoic acid conversion of 91% was achieved under optimum reaction conditions. Furthermore, the as-prepared SO42−/AlPO4-500 catalysts were tested for their reusability in repeated reaction cycles and could be effectively regenerated by a simple reactivation method.  相似文献   

19.
A two dimensional coordination polymer with pseudo‐Kagomé net [Cu3(btc)2(NH3)8(H2O)] was prepared from Cu(NO3)2 · 3H2O and 1, 3, 5‐benzenetricarboxylic acid (btc) in ammonia aqua solution and was structurally characterized by X‐ray diffraction. The magnetic susceptibility measurements, measured from 2 to 300 K, revealed a weak anti‐ferromagnetic interaction between the CuII ions via the btc ligands.  相似文献   

20.
The new approach involving the solid supported catalyst for the formation of C–N bond followed by cyclization has been reported. In this work we have reported a facile, efficient, and environment‐friendly protocol for the synthesis of some new 3‐amino‐imidazo[2,1‐b](1,3)benzothiazole derivatives by one‐pot condensation of 2‐aminobenzothiazole, indole‐3‐carbaldehyde, and aryl isocyanide in the presence of silica‐supported P2O5 as a heterogeneous solid acid catalyst. The reaction was performed using conventional method under green conditions. The present approach offers the advantages of simple methodology, inexpensive acid catalyst, short reaction time, easy work up with excellent yield, simple purification and use of green solvent. All the newly synthesized compounds were characterized in details using physical and chemical techniques such as melting point, 1H NMR, 13C NMR, and FTIR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号