首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An inorganic–organic hybrid material, poly(dimethylsilylene ethynylenephenyleneethynylene) (PMSEPE), was synthesized in a mild condition and its microfiber was successfully produced by melt electrospinning. The electrospinning parameters, which affected the morphology and diameter of fibers, were well investigated. To maintain the fiber structure at thermal cured temperature (above melting point), the PMSEPE fibers were enhanced via thiol‐yne photo polymerization. Followed by the thermal curing reaction, the heat‐resistance and mechanical properties of fibers were enhanced. The mechanism of two‐step curing was explored and confirmed by means of Fourier transform infrared, differential scanning calorimetry, and X‐ray photoelectron spectroscopy (XPS). Thermaogravimetric analysis and scanning electron microscopy results show that after carbonization at 800 °C, the two‐step cured fibers had only a small weight loss (20%) and the fibers can still maintain the original morphology. Moreover, the two‐step cured fiber exhibited a high tensile strength (55.4 MPa) and a small elongation at break (0.02%). All the results indicate that the fibers could be applied as fiber‐reinforced materials. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2815–2823  相似文献   

2.
Four sorts of epoxy resins containing degradable acetal linkages were synthesized by the reaction of bisphenol A (BA) or cresol novolak (CN) resin with vinyl ethers containing a glycidyl group [4‐vinlyoxybutyl glycidyl ether (VBGE) and cyclohexane dimethanol vinyl glycidyl ether (CHDMVG)] and cured with known typical amine‐curing agents. The thermal and mechanical properties of the cured resins were investigated. Among the four cured epoxy resins, the CN‐CHDMVG resin (derived from CN and CHDMVE) exhibited relatively high glass transition temperature (Tg = ca. 110 °C). The treatment of these cured epoxy resins with aqueous HCl in tetrahydrofuran (THF) at room temperature for 12 h generated BA and CN as degradation main products in high yield. Carbon fiber‐reinforced plastics (CFRPs) were prepared by heating the laminated prepreg sheets with BA‐CHDMVG (derived from BA and CHDMVE) and CN‐CHDMVG, in which strands of carbon fibers are impregnated with the epoxy resins containing conventional curing agents and curing accelerators. The obtained CFRPs showed good appearance and underwent smooth breakdown with the aqueous acid treatment in THF at room temperature for 24 h to produce strands of carbon fiber without damaging their surface conditions and tensile strength. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

3.
In situ monitoring of resin flow, impregnation of carbon fiber fabrics, and curing during composite manufacturing are very important for determining the quality of composite parts. In conventional methods, sensors, such as optical fibers and strain gages, are bonded to or embedded in the composites for measuring the changes in mechanical and chemical properties. Although they can detect resin curing behavior and impregnation of carbon fibers, they may adversely affect the manufacturing process or structural integrity of the composites. In this study, carbon fiber itself was used as a sensor that minimizes the degradation of mechanical properties and increases the efficiency of monitoring the manufacturing process. The change in the electrical resistance of carbon fiber fabrics was monitored during the various manufacturing processes when the resin flowed through the carbon fiber fabric and curing progressed. The effectiveness of this monitoring method was confirmed, and it is expected to be applicable in monitoring the quality of the finished composite parts.  相似文献   

4.
During in situ low‐energy electron beam (E‐Beam) curing for carbon fiber‐reinforced polymer composite, prepregs undergoes 3 sequenced curing processes, namely E‐Beam‐induced curing, postray curing after irradiation, and thermally induced curing. In this study, the irradiation dose rate (IDR) is demonstrated to be influential on the redistribution of the curing portions in the 3 curing stages and directly influences the interlaminar bonding quality of the stepwise cured laminates. Differential scanning calorimetry results showed that higher IDR resulted in higher temperature of irradiated prepregs, and hence, a higher degree of curing was induced by the E‐Beam within a dose range of 0 to 500 kGy as compared to lower IDRs, which decreased the interlaminar physical adhesive quality between layers. Analysis indicates that other than pure physical adhesion between uncured layers, postray curing can further enhance the interlaminar shear strength for cured laminates by introducing cross‐layer chemical bonding in the interlaminar zone.  相似文献   

5.
A novel glass fiber reinforced composite was prepared by using silicon‐containing hybrid polymers, poly(methylhydrogen‐diethynylsilyene) (PMES) and poly(phenylethynyl‐silyloxide‐phenylborane) (APABS), as matrix resins. The curing behavior and rheological properties of the matrix resins were investigated by differential scanning calorimetry (DSC) and rotational rheometer. The dynamic viscoelastic properties, mechanical properties, and microstructures of the composites were studied by dynamic mechanical analysis (DMA), universal testing machine (UTM), and scanning electron microscopy (SEM), respectively. The results show that the composite can be well cured between 200 and 300 °C through reactive groups like Si‐H, N‐H, and C≡C units, the possible thermosetting mechanism is also proposed. The composites exhibit excellent mechanical properties with bending strength reach up to 261 and 178 MPa before and after heat‐treating, respectively. SEM analysis clearly indicates that crack in the matrix, matrix/fiber interface debonding, and fiber pull out are predominate failure mechanism for the composites which are heat‐treated in different temperatures. All these obtained results can give theoretical guiding reference for their further applications. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
In this work, rubber magnetic composites were prepared by incorporation of strontium ferrite into elastomeric matrix based on natural rubber. Cross‐linking of the rubber matrix was performed by using sulfur and peroxide curing system. The study was aimed at the investigation of the type of curing system and magnetic filler content on curing process and cross‐link density of prepared materials. Then, the influence of both factors on physical–mechanical and magnetic properties was observed. The obtained results demonstrate that sulfur‐cured composites show better physical–mechanical properties, especially at lower content of strontium ferrite. With increasing amount of ferrite, the differences between the characteristics of both types of composites became less visible, while peroxide‐cured sample with maximum ferrite content showed superior tensile strength in comparison with tensile strength of maximally filled sample cured with sulfur system. The obtained results demonstrate better compatibility between the rubber and the filler when peroxide system was introduced for cross‐linking of the rubber matrix. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Free‐radical photopolymerization is scarcely used for the manufacturing of fiber‐reinforced polymers. The main issue relies on the penetration depth of light which affects the conversion degree when photopolymerizing thick samples. Consequently, this could lead to inhomogeneous polymer properties. The ability of acylphosphine oxides to photobleach under near UV irradiation makes them of great interest for the curing of thick samples. Therefore, the influence of (2,4,6‐trimethylbenzoyl) phosphine oxide on the curing of composites under LED is investigated. Although that a frontal photopolymerization process can be evidenced, it was found that full photobleaching is hardly obtained at high concentration of photoinitiator. Six layers laminates made of unidirectional fiber glass and unsaturated polyester resin were prepared. The existence of an optimal range of concentration for which the conversion of the resin is the most homogeneous throughout its thickness was pointed out, a fact that is confirmed by dynamic mechanical analysis. Interestingly, this effect is reflected in the shrinkage of the resin as shown by direct measurements or deflection experiments. Mechanical analysis was undertaken whose results correlate well with the aforementioned study, demonstrating the occurrence of a balance between the concentration of photoinitiator and the mechanical properties of the samples. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 898–906  相似文献   

8.
To prevent the loss of fiber strength, ultrahigh‐molecular‐weight polyethylene (UHMWPE) fibers were treated with an ultraviolet radiation technique combined with a corona‐discharge treatment. The physical and chemical changes in the fiber surface were examined with scanning electron microscopy and Fourier transform infrared/attenuated total reflectance. The gel contents of the fibers were measured by a standard device. The mechanical properties of the treated fibers and the interfacial adhesion properties of UHMWPE‐fiber‐reinforced vinyl ester resin composites were investigated with tensile testing. After 20 min or so of ultraviolet radiation based on 6‐kW corona treatment, the T‐peel strength of the treated UHMWPE‐fiber composite was one to two times greater than that of the as‐received UHMWPE‐fiber composite, whereas the tensile strength of the treated UHMWPE fibers was still up to 3.5 GPa. The integrated mechanical properties of the treated UHMWPE fibers were also optimum. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 463–472, 2004  相似文献   

9.
A series of fluorene‐based benzoxazine copolymers were synthesized from the mixture of 9,9‐bis(4‐hydroxyphenyl)fluorene and bisphenol A, and 4,4′‐diaminodiphenyloxide and paraformaldehyde. And the cured polybenzoxazine films derived from these copolymers were also obtained. Fourier transform infrared spectroscopy (FTIR) and hydrogen nuclear magnetic resonances confirmed the structure of these benzoxazines. Their molecular weight was estimated by gel permeation chromatography. The curing behavior of the precursors was monitored by FTIR and differential scanning calorimetry. Dynamic mechanical analysis and thermogravimetric analysis were performed to study the thermal properties of the cured polymers. The cured polybenzoxazines exhibit excellent heat resistance with glass transition temperatures (Tg) of 286–317°C, good thermal stability along with the values of 5% weight loss temperatures (T5) over 340°C, and high char yield over 50% at 800°C. The mechanical properties of the cured polymers were also measured by bending tests. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Hyperstar polymers (HSPs) with hyperbranched aromatic polyester core and arms consisting of block copolymers of poly(methyl methacrylate) and poly(hydroxyethyl methacrylate) have been used as polymeric modifiers in cycloaliphatic epoxy‐anhydride formulations catalyzed with tertiary amines, with the purpose of enhancing the impact strength of the resulting materials without compromising other thermal and mechanical properties.> In this work, the effect of these polymeric modifiers on the curing kinetics, processing, thermal‐mechanical properties and thermal stability has been studied using thermal analysis techniques such as DSC, TMA, DMA, and TGA. The morphology of the cured materials has been analyzed with SEM. The curing kinetics has been analyzed by isoconversional procedures and phenomenological kinetic models taking into account the vitrification during curing, and the degradation kinetics has been analyzed by means of isoconversional procedures, summarizing the results in a time‐temperature‐transformation (TTT) diagram. The results show that HSPs participate in the crosslinking process due to the presence of reactive groups, without compromising significantly their thermal‐mechanical properties. The modified materials show a potential toughness enhancement produced by the formation of a nano‐grained morphology. The TTT diagram is shown to be a useful tool for the optimization of the curing schedule in terms of curing completion and safe processing window, as well as for defining storage stability conditions. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1227–1242  相似文献   

11.
Ablative nanocomposites based on nanoclay‐dispersed addition curable propargylated phenolic novolac (ACPR) resin, reinforced with chopped silica fiber, were investigated for their thermal response behavior under simulated heat flux conditions corresponding to typical atmospheric re‐entry conditions. Organically modified nanoclay (Cloisite 30B) was incorporated to different extents (1–10%) in the ACPR resin matrix containing silica fiber to form the composite. The composites displayed optimum mechanical properties at around 3 wt% of nanoclay loading. The resultant composites were evaluated for their ablative characteristics as well as mechanical, thermal and thermo‐physical properties. The reinforcing effect of nanoclay was established and correlated to the composition. The mechanical properties of the composites and its pyrolysed product improved at moderate nanoclay incorporation. Plasma arc jet studies revealed that front wall temperature is lowered by 20°C and that at backwall by 10–13°C for the 3 wt% nanoclay‐incorporated composites due to impedance by nanoclay for the heat conduction. Nanoclay diminished the coefficient of thermal expansion by almost 50% and also reduced the flammability of the composites. The trend in mechanical properties was correlated to the microstructural morphology of the composites. The nanomodification conferred better strength to the pyrolysed composites. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
The study is focused on thermoset composites reinforced with carbon and glass woven fabrics. Two types of thermoset resins, for example, epoxy and vinyl ester were used as the matrix. Varying concentrations of internal mold releasing (IMR) agent was used in the resin. The composites were cured both at room temperature and at 80°C. The flexural properties were studied using 3‐point bending test method. Further theinter‐laminar shear strength (ILSS) was investigated using the short beam shear strength test based on 3‐point bending. The flexural modulus of room temperature cured epoxy resin is higher than that of high temperature cured epoxy resin and cured vinyl ester resin. The flexural modulus is lowest for 1% IMR sample in epoxy system and the modulus for 0% and 2% epoxy are not significantly different. Lowest flexural strength and modulus can be observed for the combination of reinforcement and curing conditions for samples containing 1% IMR for the epoxy systems. Carbon fiber is found to be less compatible with the vinyl ester resin system and the addition of IMR to the resin degraded the properties further. Inter‐laminar shear strength for epoxy‐based composites is not much affected by presence of IMR, but in case of vinyl ester based composites there is a decrease in ILSS on addition of IMR agent. The study explains variation in flexural properties on addition of IMR and change of curing conditions. These results can be used for ascertaining variation in mechanical properties in real use.  相似文献   

13.
The aim of this work is the evaluation of the effects of plasma treatment and the addition of CNT on the mechanical properties of carbon fibre/PA6 composite. A powder impregnation process with integrated inline continuous plasma of carbon fibers was used to produce CF/PA6 composite. CF/PA6 composite was processed into test laminates by compression moulding, and interface dominated composite properties were studied. The tensile and impact strength of composites containing CNT and plasma‐treated carbon fibres improved obviously. The tensile strength of nanocomposite largely increases with the increasing of the CNT content and then decreases when the CNT content is over 2%. The hydroxyl groups of the fibers surface are in favor of the wettability of carbon fibers by the polar matrix resin, which is resulting in a further interaction of the fiber surface with the curing system of the matrix resin.  相似文献   

14.
In the past decades, 4‐phenylethynyl phthalic anhydride (4‐PEPA) has been the most important endcapper used for thermoset polyimide. As the isomer of4‐PEPA, 3‐phenylethynyl phthalic anhydride (3‐PEPA) has attracted our interest. In this article, 3‐PEPA was synthesized and a comparative study with 4‐PEPA on curing temperature, curing rate, thermal and mechanical properties of oligomers and cured polymers was presented. The new phenylethynyl endcapped model compound, N‐phenyl‐3‐phenylethynyl phthalimide, was synthesized and characterized. The molecular structure of model compound was determined via single‐crystal X‐ray diffraction and the thermal curing process was investigated by Fourier transform infrared. Differential scanning calorimetry clearly showed that the model compound from 3‐PEPA had about 20 °C higher curing onset and peak temperature than the 4‐PEPA analog. This result was further proved by the dynamic rheological analysis that the temperature of minimum viscosity for oligomers end‐capped with 3‐PEPA was above 20 °C higher than that of the corresponding 4‐PEPA endcapped oligomers with the same calculated number average molecular weight. The cured polymer from 3‐PEPA displayed slightly higher thermal oxidative stability than those from 4‐PEPA by thermogravimetric analysis. The thermal curing kinetics of 3‐PEPA endcapped oligomer (OI‐5) and 4‐PEPA endcapped oligomer (OI‐6) fitted a first‐order rate law quite well and revealed a similar rate acceleration trend. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4227–4235, 2008  相似文献   

15.
耐高温可溶性聚酰亚胺树脂及其复合材料   总被引:1,自引:0,他引:1  
制备了2种耐高温可溶型聚酰亚胺树脂(PI-1, PI-2)及其复合材料, 系统研究了树脂的工艺性, 纯树脂固化物的热性能及其复合材料的界面形貌、 介电性能和力学性能. 研究结果表明, 树脂低聚物在极性非质子溶剂中具有良好的溶解性, 且熔体黏度较低, 表明其具有优异的加工性能. 两种树脂固化物在空气中的5%热失重温度均高于550 ℃, PI-1树脂的玻璃化转变温度(Tg)为430 ℃, PI-2树脂的Tg为380 ℃. 石英纤维/PI-1和石英纤维/PI-2复合材料具有较低的介电常数和介电损耗. 碳纤维/PI-1复合材料在420 ℃下的弯曲强度保持率可达62%, 层间剪切强度保持率可达48%, 具有较优异的高温力学性能. 采用普通模压工艺制备了厚度高达45 mm的复合材料制件, 进一步证明这2种树脂具有优异的工艺性.  相似文献   

16.
Natural rubber is reinforced with a novel type of grass fiber (Cyperus Tegetum Rox b). The effects of fiber loading of different mesh sizes on curing characteristics and mechanical properties of grass fiber filled natural rubber composite are studied. Since 400 mesh grass fiber loaded natural rubber composite shows superior mechanical properties, therefore the effect of silane coupling agent was studied for this particular composite. Here composites were prepared by using water leached grass fiber. Optimum cure time increases with the increase in fiber loading but the change in scorch time is less. The same trend of increase in optimum cure time is observed in the presence of Si69. But the value is higher compared to that of rubber composite without Si69. With increase in the fiber loading, modulus and hardness of the composite increases but tensile strength decreases. The mechanical properties of the composite, namely moduli at 200 and 300% elongation and hardness increase in the presence of Si69 but tensile strength is less compared to that of the composite without Si69. Elongation at break is not much affected due to the presence of Si69. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
Highly flexible, optically transparent epoxy resin/cellulose composites were prepared by using the solution impregnation method firstly and then thermal cured. The composite contained 60 wt% resin was still mechanically stable and flexible, and it integrated the merits of cellulose and resin, but the highly hydrophilic behavior of cellulose has been reduced. Contact angle measurements with water demonstrated that the composite films had obvious hydrophobic properties, and a decrease in the water uptake and the permeability towards water vapor gas was also observed. The transmittance of the composite films at 550 nm was about 85–88 %. The thermal and mechanical properties of the composite films were improved. Moreover, the composite films could be used in UV imprint lithography for circuit, and the definition could be compared with that of widely used glass plate.  相似文献   

18.
Phosphorus‐containing novolac–epoxy systems were prepared from novolac resins and isobutyl bis(glycidylpropylether) phosphine oxide (IHPOGly) as crosslinking agent. Their curing behavior was studied and the thermal, thermomechanical, and flame‐retardant properties of the cured materials were measured. The Tg and decomposition temperatures of the resulting thermosets are moderate and decrease when the phosphorous content increases. Whereas the phosphorous species decrease the thermal stability, at higher temperatures the degradation rates are lower than the degradation rate of the phosphorous‐free resin. V‐O materials were obtained when the resins were tested for ignition resistance with the UL‐94 test. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3516–3526, 2004  相似文献   

19.
Epoxy–aromatic diamine formulations are simultaneously modified with two immiscible thermoplastics (TPs), poly(ether imide) (PEI) and polysulfone (PSF), in concentrations ranging from 5 to 15 wt %. The epoxy monomer is based on diglycidyl ether of bisphenol A and the aromatic diamines (ADs) are either 4,4′‐diaminodiphenylsulfone (DDS) or 4,4′‐methylenebis(3‐chloro 2,6‐diethylaniline) (MCDEA). Using phase diagrams developed in Part I of this series, thermal cycles are selected to generate different morphologies. It is found that, whatever the AD employed, a particulate morphology is obtained when curing blends that are initially homogeneous. In the case of DDS‐cured blends, a unimodal particle size distribution of PSF and PEI dispersed in a continuous epoxy‐rich phase is observed. By contrast, the MCDEA‐cured blends show a bimodal particle size distribution for all PSF/PEI relations that are analyzed. A completely different morphology, characterized by a distribution of irregular TP‐rich domains dispersed in an epoxy‐rich phase (double phase morphology), is obtained when curing blends that are initially immiscible. An X‐ray analysis of the different phases makes it possible to determine their qualitative composition. The dynamic mechanical behavior of fully cured blends is also discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3964–3975, 2004  相似文献   

20.
Bismaleimide (BMI) resins with good thermal stability, fire resistance, low water absorption, and good retention of mechanical properties at elevated temperatures, especially in hot/wet environments, have attracted more attention in the electronic and aerospace industries. However, their relatively high dielectric constant limits their application in the aforementioned fields. In this work, a new promising approach is presented that consists of the formation of a self‐catalytic thermoset/thermoset interpenetrating polymer network. Interpenetrating polymer networks (IPNs) based on modified BMI resin (BMI/DBA) and cyanate ester (b10) were synthesized via prepolymerization followed by thermal curing. The self‐catalytic curing mechanism of BMI/DBA‐CE IPN resin systems was examined by differential scanning calorimetry. The dielectric properties of the cured BMI/DBA‐CE IPN resin systems were evaluated by a dielectric analyzer and shown in dielectric properties‐temperature‐log frequency three‐dimensional plots. The effect of temperature and frequency on the dielectric constant of the cured BMI/DBA‐CE IPN resin systems is discussed. The composition effect on the dielectric constant of the cured IPN resin systems was analyzed on the basis of Maxwell's equation and rule of mixture. The obtained BMI/DBA‐CE IPN resin systems have the combined advantages of low dielectric constant and loss, high‐temperature resistance, and good processability, which have many applications in the microelectronic and aerospace industries. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1123–1134, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号