首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
A polyhydrido copper nanocluster, [Cu20H11{Se2P(OiPr)2}9] ( 2H ), which exhibits an intrinsically chiral inorganic core of C3 symmetry, was synthesized from achiral [Cu20H11{S2P(OiPr)2}9] ( 1H ) of C3h symmetry by a ligand‐exchange method. The structure has a distorted cuboctahedral Cu13 core, two triangular faces of which are capped along the C3 axis, one by a Cu6 cupola and the other by a single Cu atom. The Cu20 framework is further stabilized by 9 diselenophosphate and 11 hydride ligands. The number of hydride, phosphorus, and selenium resonances and their splitting patterns in multinuclear NMR spectra of 2H indicate that the chiral Cu20H11 core retains its C3 symmetry in solution. The 11 hydride ligands were located by neutron diffraction experiments and shown to be capping μ3‐H and interstitial μ5‐H ligands (in square‐pyramidal and trigonal‐bipyramidal cavities), as supported by DFT calculations on [Cu20H11(Se2PH2)9] ( 2H′ ) as a simplified model.  相似文献   

2.
Although atomically precise polyhydrido copper nanoclusters are of prime interest for a variety of applications, they have so far remained scarce. Herein, this work describes the synthesis of a dithiophosphate-protected copper(I) hydride-rich nanocluster (NC), [Cu30H18{S2P(OnPr)2}12] ( 1H ), fully characterized by various spectroscopic methods and single-crystal X-ray diffraction. The X-ray structure of 1H reveals an unprecedented central Cu12 hollow icosahedron. Six faces of this icosahedron are capped by Cu3 triangles, the whole Cu30 core being wrapped by twelve dithiophosphate ligands and the whole cluster has ideal S6 symmetry. The locations of the 18 hydrides in 1H were ascertained by a single-crystal neutron diffraction study. They are composed of three types: capping μ3-H, interstitial μ4-H (seesaw) and μ5-H ligands (square pyramidal), in good agreement with the DFT simulations. The numbers of hydrides and ligand resonances in the 1H NMR spectrum of 1H are in line with their coordination environment in the solid state, retaining the S6 symmetry in solution. Furthermore, two new Se-protected polyhydrido copper nanoclusters, [Cu30H18{Se2P(OR)2}12] ( 2H : R=iPr 3H : R=iBu) were synthesized from their sulfur relative 1H via ligand displacement reaction and their X-ray structures feature the exceptional case where both the NC shape and size are fully conserved during the course of ligand exchange. DFT and TD-DFT calculations allow understanding the bonding and optical properties of clusters 1H – 3H . In addition, the reaction of 1H with [Pd(PPh3)2Cl2] in the presence of terminal alkynes led to the formation of new bimetallic Cu−Pd alloy clusters [PdCu14H2{S2P(OnPr)2}6(C≡CR)6] ( 4 : R=Ph; 5 : R = C6H4F).  相似文献   

3.
The first atomically and structurally precise silver‐nanoclusters stabilized by Se‐donor ligands, [Ag20{Se2P(OiPr)2}12] ( 3 ) and [Ag21{Se2P(OEt)2}12]+( 4 ), were isolated by ligand replacement reaction of [Ag20{S2P(Oi Pr)2}12] ( 1 ) and [Ag21{S2P(Oi Pr)2}12]+ ( 2 ), respectively. Furthermore, doping reactions of 4 with Au(PPh3)Cl resulted in the formation of [AuAg20{Se2P(OEt)2}12]+ ( 5 ). Structures of 3 , 4 , and 5 were determined by single‐crystal X‐ray diffraction. The anatomy of cluster 3 with an Ag20 core having C 3 symmetry is very similar to that of its dithiophosphate analogue 1 . Clusters 4 and 5 exhibit an Ag21 and Au@Ag20 core of Oh symmetry composed of eight silver capping atoms in a cubic arrangement and encapsulating an Ag13 and Au@Ag12 centered icosahedron, respectively. Both ligand exchange and heteroatom doping result in significant changes in optical and emissive properties for chalcogen‐passivated silver nanoparticles, which have been theoretically confirmed as 8‐electron superatoms.  相似文献   

4.
The first hydride-containing 2-electron palladium/copper alloys, [PdHCu11{S2P(OiPr)2}6(C≡CPh)4] ( PdHCu11 ) and [PdHCu12{S2P(OiPr)2}5{S2PO(OiPr)} (C≡CPh)4] ( PdHCu12 ), are synthesized from the reaction of [PdH2Cu14{S2P(OiPr)2}6(C≡CPh)6] ( PdH2Cu14 ) with trifluoroacetic acid (TFA). X-ray diffraction reveals that the PdHCu11 and PdHCu12 kernels consist of a central PdH unit encapsulated within a vertex-missing Cu11 cuboctahedron and complete Cu12 cuboctahedron, respectively. DFT calculations indicate that both PdHCu11 and PdHCu12 can be considered as axially-distorted 2-electron superatoms. PdHCu11 shows excellent HER activity, unprecedented within metal nanoclusters, with an onset potential of −0.05 V (at 10 mA cm−2), a Tafel slope of 40 mV dec−1, and consistent HER activity during 1000 cycles in 0.5 M H2SO4. Our study suggests that the accessible central Pd site is the key to HER activity and may provide guidelines for correlating catalyst structures and HER activity.  相似文献   

5.
The structurally precise Cu‐rich hydride nanoclusters [PdCu14H2(dtc/dtp)6(C≡CPh)6] (dtc: di‐butyldithiocarbamate ( 1 ); dtp: di‐isopropyl dithiophosphate ( 2 )) were synthesized from the reaction of polyhydrido copper clusters [Cu28H15(S2CNnBu2)12]+ or [Cu20H11{S2P(OiPr)2}9] with phenyl acetylene in the presence of Pd(PPh3)2Cl2. Their structures and compositions were determined by single‐crystal X‐ray diffraction and the results supported by ESI‐mass spectrometry. Hydride positions in 1 were confirmed by single‐crystal neutron diffraction. Each hydride is connected to one Pd0 and four CuI atoms in slightly distorted trigonalbipyramidal geometry. The anatomies of clusters 1 and 2 are very similar and DFT calculations allow rationalizing the interactions between the encapsulated [PdH2]2? unit and its Cu14 bicapped icosahedral cage. As a result, Pd has the highest coordination number (14) so far recorded.  相似文献   

6.
7.
The formation of a C‐N bond via the cross‐couplings of aryl iodides with azoles, aryl amine, and amides can be successfully achieved in decent yield by the utilization of both [Cu 8(H){S2P(OiPr)2}6]+ and [Cu8{S2P(OEt)2}6]2+ as the pre‐catalysts.  相似文献   

8.
A novel discrete [Ag21{S2P(OiPr)2}12](PF6) nanocluster has been synthesized and characterized by single‐crystal X‐ray diffraction and also NMR spectroscopy (1H, 31P), ESI mass spectrometry, and other analytic techniques (XPS, EDS, UV/Vis spectroscopy). The Ag21 skeleton has an unprecedented silver‐centered icosahedron that is capped by eight additional metal atoms. The whole framework is protected by twelve dithiophosphate ligands. According to the spherical Jellium model, the stability of monocationic nanocluster can be described by an 8‐electron superatom with 1S2 1P6 configuration, as confirmed by DFT calculations.  相似文献   

9.
An air‐ and moisture‐stable nanoscale polyhydrido copper cluster [Cu32(H)20{S2P(OiPr)2}12] ( 1H ) was synthesized and structurally characterized. The molecular structure of 1H exhibits a hexacapped pseudo‐rhombohedral core of 14 Cu atoms sandwiched between two nestlike triangular cupola fragments of (2×9) Cu atoms in an elongated triangular gyrobicupola polyhedron. The discrete Cu32 cluster is stabilized by 12 dithiophosphate ligands and a record number of 20 hydride ligands, which were found by high‐resolution neutron diffraction to exhibit tri‐, tetra‐, and pentacoordinated hydrides in capping and interstitial modes. This result was further supported by a density functional theory investigation on the simplified model [Cu32(H)20(S2PH2)12].  相似文献   

10.
Structure and magnetic properties of N‐diisopropoxyphosphorylthiobenzamide PhC(S)‐N(H)‐P(O)(OiPr)2 ( HLI ) and N‐diisopropoxyphosphoryl‐N′‐phenylthiocarbamide PhN(H)‐C(S)‐N(H)‐P(O)(OiPr)2 ( HLII ) complexes with the CoII cation of formulas [Co{PhC(S)‐N‐P(O)(OiPr)2}2] ( 1 ), [Co{PhN(H)‐C(S)‐N‐P(O)(OiPr)2}2] ( 2 ), [Co{PhC(S)‐N(H)‐P(O)(OiPr)2}2{PhC(S)‐N‐P(O)(OiPr)2}2] ( 1a ) and [Co{PhC(S)‐N‐P(O)(OiPr)2}2}(2,2′‐bipy)] ( 3 ), [Co{PhC(S)‐N‐P(O)(OiPr)2}2(1,10‐phen)] ( 4 ), [Co{PhN(H)‐C(S)‐N‐P(O)(OiPr)2}2(2,2′‐bipy)] ( 5 ), [Co{PhN(H)‐C(S)‐N‐P(O)(OiPr)2}2(1,10‐phen)] ( 6 ) were investigated. Paramagnetic shifts in the 1H NMR spectrum were observed for high‐spin CoII complexes with HLI,II , incorporating the S‐C‐N‐P‐O chelate moiety and two aromatic chelate ligands. Investigation of the thermal dependence of the magnetic susceptibility has shown that the extended materials 1‐2 and 6 show ferromagnetic exchange between distorted tetrahedral ( 1 , 2 ) or octahedral ( 1a , 6 ) metal atoms whereas 3 and 5 show antiferromagnetic properties. Compound 4 behaves as a spin‐canted ferromagnet, an antiferromagnetic ordering taking place below a critical temperature, Tc = 115 K. Complexes 1 and 1a were investigated by single crystal X‐ray diffraction. The cobalt(II) atom in complex 1 resides a distorted tetrahedral O2S2 environment formed by the C=S sulfur atoms and the P=O oxygen atoms of two deprotonated ligands. Complex 1a has a tetragonal‐bipyramidal structure, Co(Oax)2(Oeq)2(Seq)2, and two neutral ligand molecules are coordinated in the axial positions through the oxygen atoms of the P=O groups. The base of the bipyramid is formed by two anionic ligands in the typical 1,5‐O,S coordination mode. The ligands are in a trans configuration.  相似文献   

11.
12.
A decanuclear silver chalcogenide cluster, [Ag10(Se){Se2P(OiPr)2}8] (2) was isolated from a hydride-encapsulated silver diisopropyl diselenophosphates, [Ag7(H){Se2P(OiPr)2}6], under thermal condition. The time-dependent NMR spectroscopy showed that 2 was generated at the first three hours and the hydrido silver cluster was completely consumed after thirty-six hours. This method illustrated as cluster-to-cluster transformations can be applied to prepare selenide-centered decanuclear bimetallic clusters, [CuxAg10-x(Se){Se2P(OiPr)2}8] (x = 0–7, 3), via heating [CuxAg7−x(H){Se2P(OiPr)2}6] (x = 1–6) at 60 °C. Compositions of 3 were accurately confirmed by the ESI mass spectrometry. While the crystal 2 revealed two un-identical [Ag10(Se){Se2P(OiPr)2}8] structures in the asymmetric unit, a co-crystal of [Cu3Ag7(Se){Se2P(OiPr)2}8]0.6[Cu4Ag6(Se){Se2P(OiPr)2}8]0.4 ([3a]0.6[3b]0.4) was eventually characterized by single-crystal X-ray diffraction. Even though compositions of 2, [3a]0.6[3b]0.4 and the previous published [Ag10(Se){Se2P(OEt)2}8] (1) are quite similar (10 metals, 1 Se2−, 8 ligands), their metal core arrangements are completely different. These results show that different synthetic methods by using different starting reagents can affect the structure of the resulting products, leading to polymorphism.  相似文献   

13.
In this work, we demonstrate a simple, one pot and seed free synthetic route for the formation of gold nanorods (Au NRs) via thermal decomposition of gold(I) dithiophosphate {[Au2{S2P(OiPr)2}2]n,} 1 complex as a molecular precursor in presence of 4′‐amino‐biphenyl‐4‐carboxylic molecule. Here [Au2{S2P(OiPr)2}2]n, complex functioned as gold (Au) source and 4′‐amino‐biphenyl‐4‐carboxylic molecule stabilized gold (Au) nanorods (NRs) through the unidirectional coating of Au surface during its growth in the reaction medium.  相似文献   

14.
Abstract

Several copper and silver clusters containing diselenophosphate ligands such as tetranuclear [Cu{Se2P(OR)2}]4, hexanuclear [Ag{Se2P(OR)2}]6, octanuclear [Cu88-Se)}Se2P(OR)2}6], [Ag88-Se)}Se2P(OR)2}6], [Cu88-X)}Se2P(OR)2}6](PF6), [Ag88-X)}Se2P(OR)2}6](PF6), decanuclear [Ag1010-Se)}Se2P(OR)2}8], undecanuclear [Cu119-Se)(μ3-X)3}Se2P(OR)2}6], [Ag119-Se)(μ3-X)3}Se2P(OR)2}6], and dodecanuclear [Cu12(P2Se6)}Se2P(OR)2}8] have been isolated. All these clusters were well characterized in the solid-state and solution phase by elemental analysis, positive FAB mass spectrometry, multinuclear NMR (1H, 31P, and 77Se), and single crystal X-ray diffraction. In addition, tetranuclear zinc clusters [Zn44-Se){Se2P(OPr)2}6], and [Zn44-O){Se2P(OR)2}6] (R = Et, iPr) also are synthesized and characterized. Solution studies of both [M{Se2P(OEt)2}2]∞ and [M2{Se2P(OiPr)2}4] (M = Zn, Cd) which display a monomer-dimer equilibrium in solution were performed by VT 31P NMR in CD2Cl2.  相似文献   

15.
The title centrosymmetric CuII binuclear complex, bis(μ‐N,N‐diethyl‐1,1‐di­seleno­carbamato‐Se,Se′:Se)­bis­[(N,N‐diethyl‐1,1‐di­seleno­carbamato‐Se,Se′)copper(II)], [Cu(Se2CNEt2)2]2 or [Cu2(C5H10NSe2)4], is built from two symmetry‐related [Cu{Se2CN(Et)2}2] units by pairs of Cu—Se bonds. The coordination geometry at the unique Cu atom is distorted square pyramidal, with Cu—Se distances in the range 2.4091 (11)—2.9095 (10) Å.  相似文献   

16.
Hydrothermal synthesis has afforded a pair of divalent copper acetate coordination polymers containing either 4, 4′‐dipyridylamine (dpa) or 4‐pyridylisonicotinamide (4‐pina), both of which hydrogen‐bonding capable central functional groups. X‐ray crystallography revealed that both exhibit a 1D chain dimensionality. Use of the kinked tethering ligand dpa produced [Cu(OAc)2(dpa)]n ( 1 ), which possesses a simple chain based on dpa linkage of isolated copper ions. On the other hand, employing the straighter amide ligand 4‐pina generated {[Cu(OAc)2(4‐pina)] · 0.5H2O}n ( 2 ), which exhibits {Cu2O2} rhomboid dimers formed through bridging acetate ligands. Weak antiferromagnetic coupling [g = 1.984(3), J = –3.2(3) cm–1] was observed within the axial‐equatorial bridged {Cu2O2} dimers in 2 , with possible ferrimagnetism due to spin canting below 11 K.  相似文献   

17.
Small Agn nanoclusters (n<10) have been emerging as promising materials as sensing, biolabeling, and catalysis because of their unique electronic states and optical properties. However, studying synthesis, structure determination, and exploration of their properties remain major challenges as a result of the low stability of small Ag nanoclusters. Herein, we synthesized an atomically precise face‐centered‐cubic‐type small {Ag7}5+ nanocluster supported by a novel triangular hollow polyoxometalate (POM) framework [Si3W27O96]18?. The cluster showed unique {Ag7}5+‐to‐POM charge transfer bands in both visible and UV light regions. Furthermore, this small {Ag7}5+ nanocluster exhibited an unprecedented ultrastability in solution, despite having exposed Ag sites that can be accessed by small molecules, such as O2, water, and solvents.  相似文献   

18.
The title complex, chloro­bis{ethyl N‐[(4‐methyl­anilino)­thio­carbonyl]­carbamate‐κS}copper(I), [CuCl(C11H14N2O2S)2], was synthesized by the reaction of cupric chloride with the corresponding thio­urea derivative. The complex has imposed crystallographic m symmetry and the CuI coordination environment is trigonal planar, formed by two S atoms and one Cl atom. The formation of intramolecular hydrogen bonds promotes the stability of the complex.  相似文献   

19.
The title compound, [(Z)‐4‐allyl‐2‐(2‐hydroxybenzylidene)thiosemicarbazide‐κS][(E)‐4‐allyl‐1‐(2‐oxidobenzylidene)thiosemicarbazidato‐κ3O,N1,S]copper(II) monohydrate, [Cu(C11H11N3OS)(C11H13N3OS)]·H2O, crystallized as a rotational twin in the monoclinic crystal system (space group Cc) with two formula unit (Z′ = 2) in the asymmetric unit, one of which contains an allyl substituent disordered over two positions. The CuII atom exhibits a distorted square‐planar geometry involving two differently coordinated thiosemicarbazone ligands. One ligand is bonded to the CuII atom in a tridentate manner via the phenolate O, azomethine N and thioamide S atoms, while the other coordinates in a monodentate manner via the S atom only. The complex is stabilized by an intramolecular hydrogen bond, which creates a six‐membered pseudo‐chelate metalla‐ring. The structure analysis indicates the presence of the E isomer for the tridentate ligand and the Z isomer for the monodentate ligand. The crystal structure contains a three‐dimensional network built from intermolecular O—H...O, N—H...O, O—H...N and N—H...S hydrogen bonds.  相似文献   

20.
We report the CuI/O2 chemistry of complexes derived from the macrocylic ligands 14‐TMC (1,4,8,11‐tetramethyl‐1,4,8,11‐tetraazacyclotetradecane) and 12‐TMC (1,4,7,10‐tetramethyl‐1,4,7,10‐tetraazacyclododecane). While [(14‐TMC)CuI]+ is unreactive towards dioxygen, the smaller analog [(12‐TMC)CuI(CH3CN)]+ reacts with O2 to give a side‐on bound peroxo‐dicopper(II) species (SP), confirmed by spectroscopic and computational methods. Intriguingly, 12‐TMC as a N4 donor ligand generates SP species, thus in contrast with the previous observation that such species are generated by N2 and N3 ligands. In addition, the reactivity of this macrocyclic side‐on peroxo‐dicopper(II) differs from typical SP species, because it reacts only with acid to release H2O2, in contrast with the classic reactivity of Cu2O2 cores. Kinetics and computations are consistent with a protonation mechanism whereby the TMC acts as a hemilabile ligand and shuttles H+ to an isomerized peroxo core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号