首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiarm star‐branched polymers based on poly(styrene‐b‐isobutylene) (PS‐PIB) block copolymer arms were synthesized under controlled/living cationic polymerization conditions using the 2‐chloro‐2‐propylbenzene (CCl)/TiCl4/pyridine (Py) initiating system and divinylbenzene (DVB) as gel‐core‐forming comonomer. To optimize the timing of isobutylene (IB) addition to living PS⊕, the kinetics of styrene (St) polymerization at −80°C were measured in both 60 : 40 (v : v) methyl cyclohexane (MCHx) : MeCl and 60 : 40 hexane : MeCl cosolvents. For either cosolvent system, it was found that the polymerizations followed first‐order kinetics with respect to the monomer and the number of actively growing chains remained invariant. The rate of polymerization was slower in MCHx : MeCl (kapp = 2.5 × 10−3 s−1) compared with hexane : MeCl (kapp = 5.6 × 10−3 s−1) ([CCl]o = [TiCl4]/15 = 3.64 × 10−3M; [Py] = 4 × 10−3M; [St]o = 0.35M). Intermolecular alkylation reactions were observed at [St]o = 0.93M but could be suppressed by avoiding very high St conversion and by setting [St]o ≤ 0.35M. For St polymerization, kapp = 1.1 × 10−3 s−1 ([CCl]o = [TiCl4]/15 = 1.82 × 10−3M; [Py] = 4 × 10−3M; [St]o = 0.35M); this was significantly higher than that observed for IB polymerization (kapp = 3.0 × 10−4 s−1; [CCl]o = [Py] = [TiCl4]/15 = 1.86 × 10−3M; [IB]o = 1.0M). Blocking efficiencies were higher in hexane : MeCl compared with MCHx : MeCl cosolvent system. Star formation was faster with PS‐PIB arms compared with PIB homopolymer arms under similar conditions. Using [DVB] = 5.6 × 10−2M = 10 times chain end concentration, 92% of PS‐PIB arms (Mn,PS = 2600 and Mn,PIB = 13,400 g/mol) were linked within 1 h at −80°C with negligible star–star coupling. It was difficult to achieve complete linking of all the arms prior to the onset of star–star coupling. Apparently, the presence of the St block allows the PS‐PIB block copolymer arms to be incorporated into growing star polymers by an additional mechanism, namely, electrophilic aromatic substitution (EAS), which leads to increased rates of star formation and greater tendency toward star–star coupling. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1629–1641, 1999  相似文献   

2.
In this work, the polystyrene‐b‐poly(ethylene oxide) (PS‐b‐PEO) block copolymers with a trithiocarbonate group between the blocks were prepared by polymerization of styrene in the presence of a trithiocarbonate reversible addition fragmentation chain transfer (RAFT) agent connected with PEO. Decomposition of the trithiocarbonate group by UV irradiation was investigated in three different types of solvent: tetrahydrofuran (THF, common solvent for both blocks), cyclohexane/dioxane mixture (selective solvent for the PS block) and N,N‐dimethylformamide (DMF)/ethanol mixture (selective solvent for the PEO block). It is found that cleavage of the block copolymers can take place in all these three solvents and the cleavage ratio ranges from 76 to 86%. The micellar morphologies in selective solvents before and after cleavage were examined. It is observed that the size of the micelles is reduced after cleavage and sometimes aggregation of the micelles occurs due to removal of the corona of micelles. It shows that this work provides a facile and general method for synthesis of cleavable block copolymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3834–3840, 2010  相似文献   

3.
A poly(p‐phenylene) (PPP)‐poly(4‐diphenylaminostyrene) (PDAS) bipolar block copolymer was synthesized for the first time. A prerequisite prepolymer, poly(1,3‐cyclohexadiene) (PCHD)‐PDAS binary block copolymer, in which the PCHD block consisted solely of 1,4‐cyclohexadiene (1,4‐CHD) units, was synthesized by living anionic block copolymerization of 1,3‐cyclohexadiene and 4‐diphenylaminostyrene. To obtain the PPP‐PDAS bipolar block copolymer, the dehydrogenation of this prepolymer with quinones was examined, and tetrachloro‐1,2‐(o)‐benzoquinone was found to be an appropriate dehydrogenation reagent. This dehydrogenation reaction was remarkably accelerated by ultrasonic irradiation, effectively yielding the target PPP‐PDAS bipolar block copolymer. The hole and electron drift mobilities for PPP‐PDAS bipolar block copolymer were both on the order of 10?3 to 10?4 cm2/V·s, with a negative slope when plotted against the square root of the applied field. Therefore, this bipolar block copolymer was found to act as a bipolar semi‐conducting copolymer. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
We successfully synthesized poly(l ‐lactide)‐b‐poly (methyl methacrylate) diblock copolymers at ambient temperature by combining ultraviolet light‐induced copper‐catalyzed ATRP and organo‐catalyzed ring‐opening polymerization (ROP) in one‐pot. The polymerization processes were carried out by three routes: one‐pot simultaneous ATRP and ROP, one‐pot sequential ATRP followed by ROP, and one‐pot sequential ROP followed by ATRP. The structure of the block copolymers is confirmed by nuclear magnetic resonance and gel permeation chromatography, which suggests that the polymerization method is facile and attractive for preparing block copolymers. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 699–704  相似文献   

5.
In this work, we have synthesized a polycation and a polyanion via a combination of oxyanion‐initiated polymerization and polymer reaction, and then developed a novel approach to prepare a controlled magnetic target gene carrier with magnetic Fe3O4 nanoparticles as core and poly(ethylene glycol) (PEG) segment as corona via layer‐by‐layer (LbL) assembly and shell‐crosslinking. Magnetic nanoparticles (MNPs) were first modified by poly[2‐(dimethylamino)ethyl methacrylate] (PDMAEMA) via radical polymerization. The resulting MNPs were used to compact deoxyribonucleic acid (DNA) through LbL assembly, involving four steps: ( 1 ) the binding of DNA to the polycation PDMAEMA on the surface of MNPs; ( 2 ) the produced particles in Step 1 with negative charge interacting with additional polycation ethoxy group end‐capped PDMAEMA (EtO‐PDMAEMA) homopolymer, leading to a positive charge surface; ( 3 ) using carboxyl group (‐COO) of poly(methacrylic acid) (PMAA) in a diblock copolymer (MePEG2000‐b‐PMAASH) as polyanion, which has partial mercapto groups (‐SH) in PMAA segment, to interact with the particles produced in Step 2; ( 4 ) the shell of the composite nanoparticle was crosslinked by oxidizing the ‐SH groups of the MePEG2000‐b‐PMAASH to form disulfide linkage (S? S). All the processes of LbL assembly were investigated by agarose gel retardation assay and zeta potential measurements. The in vitro cytotoxicity analysis proves that polyions/DNA MNPs have excellent properties and potential applications as gene carriers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
Solid polymer electrolytes (SPEs) are compounds of great interest as safe and flexible alternative ionics materials, particularly suitable for energy storage devices. We study an unusual dependence on the salt concentration of the ionic conductivity in an SPE system based on poly(ethylene carbonate) (PEC). Dielectric relaxation spectroscopy reveals that the ionic conductivity of PEC/lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) electrolyte continues to increase with increasing salt concentration because the segmental motion of the polymer chains is enhanced by the plasticizing effect of the imide anion. Fourier transfer‐infrared (FTIR) spectroscopy suggests that this unusual phenomenon arises because of a relatively loose coordination structure having moderately aggregated ions, in contrast to polyether‐based systems. Comparative FTIR study against PEC/lithium perchlorate (LiClO4) electrolytes suggests that weak ionic interaction between Li and TFSI ions is also important. Highly concentrated electrolytes with both reasonable conductivity and high lithium transference number (t+) can be obtained in the PEC/LiTFSI system as a result of the unusual salt concentration dependence of the conductivity and the ionic solvation structure. The resulting concentrated PEC/LiTFSI electrolytes have extraordinary oxidation stability and prevent any Al corrosion reaction in a cyclic voltammetry. These are inherent effects of the highly concentrated salt. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2442–2447  相似文献   

7.
The objective of this review is to organize literature data on the thermodynamic properties of salt‐containing polystyrene/poly(ethylene oxide) (PS/PEO) blends and polystyrene‐b‐poly(ethylene oxide) (SEO) diblock copolymers. These systems are of interest due to their potential to serve as electrolytes in all‐solid rechargeable lithium batteries. Mean‐field theories, developed for pure polymer blends and block copolymers, are used to describe phenomenon seen in salt‐containing systems. An effective Flory–Huggins interaction parameter, χeff , that increases linearly with salt concentration is used to describe the effect of salt addition for both blends and block copolymers. Segregation strength, χeffN , where N is the chain length of the homopolymers or block copolymers, is used to map phase behavior of salty systems as a function of composition. Domain spacing of salt‐containing block copolymers is normalized to account for the effect of copolymer composition using an expression obtained in the weak segregation limit. The phase behavior of salty blends, salty block copolymers, and domain spacings of the latter systems, are presented as a function of chain length, composition and salt concentration on universal plots. While the proposed framework has limitations, the universal plots should serve as a starting point for organizing data from other salt‐containing polymer mixtures. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1177–1187  相似文献   

8.
9.
A rod‐coil‐rod block copolymer, polyhexylisocyanate‐block‐polystyrene‐block‐polyhexylisocyanate, of controlled molecular weight was synthesized quantitatively via living anionic polymerization using potassium naphthalenide in the presence of sodium tetraphenylborate. The use of K+ as the counterion for the polymerization of styrene, and Na+ (NaBPh4) for the polymerization of isocyanate leads to the formation of a well‐controlled novel triblock copolymer.

  相似文献   


10.
Block copolymers of acryloxy propyl triethoxysilane and styrene were prepared through nitroxide‐mediated polymerization using alkoxyamine initiators based on Ntert‐butyl‐1‐diethylphosphono‐2,2‐dimethylpropyl nitroxide. The copolymers were characterized by 1H NMR, size exclusion chromatography and differential scanning calorimetry. Their micellar behavior in dioxane/methanol solutions was examined through static light scattering and transmission electron microscopy (TEM). TEM indicated the successful formation of spherical micelles which were subsequently frozen by the sol–gel process. Hydrolysis–condensation of the reactive ethoxysilyl side groups was followed by FTIR, 1H NMR, and 29Si NMR. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 784–793, 2010  相似文献   

11.
Polyamide 12,T–polyamide‐6 (PA‐12,T–PA‐6) block copolymers were synthesized by anionic polymerization of caprolactam using a PA‐12,T macrocoinitiator (McI). PA‐12,T McI and its precursors are soluble in molten caprolactam allowing for both the McI step‐growth polymerization and anionic polymerization to be performed in one‐pot. It was found that the competing reaction rates of caprolactam ring‐opening polymerization and McI transamidation are both deterred by a common ion effect using CaCl2 and soluble materials were obtained using >1 mol % CaCl2. Without CaCl2, the reaction mixture solidifies in less than 30 s and produces crosslinked materials. To understand this effect, PA‐12,T McI reactions with caprolactam were performed with 1–10 mol % CaCl2, and polymer structures were characterized using 13C NMR and dilute solution viscometry. These data were then correlated with unique thermal properties and swelling behavior of the block copolymers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
13.
Two phase separating block copolymers equipped with functional groups (acid and alkyne) were synthesized via reversible addition‐fragmentation chain transfer (RAFT) polymerization. Thin films of these materials were prepared and examined with regard to surface morphology, surface composition, and film stability. Self‐assembled structures with domain sizes of about 40 nm were detected through atomik force microscopy (AFM) analysis while X‐ray photoelectron spectroscopy measurements revealed a balanced surface exposure of the two segregated phases. Thus, reactive groups being present in both phases are specifically provided within nanoscopic surface areas. The films showed good stability on exposure to various solvents but the self‐organized surface patterns were only resistant toward ethanol. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
Tetraphenylporphyrin‐end‐functionalized polycyclohexane (H2TPP‐PCHE) and its metal complexes (MTPP‐PCHE) were synthesized as the first successful example of porphyrin‐end‐functionalized transparent and stable polymers with a well‐controlled and defined polymer chain structure. Chloromethyl‐end‐functionalized poly(1,3‐cyclohexadiene) (CM‐PCHD) was synthesized as prerequisite prepolymer by the postpolymerization reaction of poly(1,3‐cyclohexadienyl)lithium and chloro(chloromethyl)dimethylsilane. CM‐end‐functionalized PCHE (CM‐PCHE) was prepared by the complete hydrogenation of CM‐PCHD with p‐toluenesulfonyl hydrazide. H2TPP was incorporated onto the polymer chain end by the addition of 5‐(4‐hydroxyphenyl)‐10,15,20‐triphenylporphyrin to CM‐PCHE. The complexation of H2TPP‐PCHE and Zn(OAc)2 (or PtCl2) yielded a zinc (or platinum) complex of H2TPP‐PCHE. H2TPP‐PCHE and MTPP‐PCHE were readily soluble in common organic solvents, and PCHE did not inhibit the optical properties of the H2TPP, ZnTPP, and PtTPP end groups. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
A series of cyclopentadiene (CPD)‐based polymers and copolymers were synthesized by a controlled cationic polymerization of CPD. End‐functionalized poly(CPD) was synthesized with the HCl adducts [initiator = CH3CH(OCH2CH2X)Cl; X = Cl ( 2a ), acetate ( 2b ), or methacrylate] of vinyl ethers carrying pendant functional substituents X in conjunction with SnCl4 (Lewis acid as a catalyst) and n‐Bu4NCl (as an additive) in dichloromethane at −78 °C. The system led to the controlled cationic polymerizations of CPD to give controlled α‐end‐functionalized poly(CPD)s with almost quantitative attachment of the functional groups (Fn ∼ 1). With the 2a or 2b /SnCl4/n‐Bu4NCl initiating systems, diblock copolymers of 2‐chloroethyl vinyl ether (CEVE) and 2‐acetoxyethyl vinyl ether with CPD were also synthesized by the sequential polymerization of CPD and these vinyl ethers. An ABA‐type triblock copolymer of CPD (A) and CEVE (B) was also prepared with a bifunctional initiator. The copolymerization of CPD and CEVE with 2a /SnCl4/n‐Bu4NCl afforded random copolymers with controlled molecular weights and narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight = 1.3–1.4). © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 398–407, 2001  相似文献   

16.
Novel amphiphilic star‐block copolymers, star poly(caprolactone)‐block‐poly[(2‐dimethylamino)ethyl methacrylate] and poly(caprolactone)‐block‐poly(methacrylic acid), with hyperbranched poly(2‐hydroxyethyl methacrylate) (PHEMA–OH) as a core moiety were synthesized and characterized. The star‐block copolymers were prepared by a combination of ring‐opening polymerization and atom transfer radical polymerization (ATRP). First, hyperbranched PHEMA–OH with 18 hydroxyl end groups on average was used as an initiator for the ring‐opening polymerization of ε‐caprolactone to produce PHEMA–PCL star homopolymers [PHEMA = poly(2‐hydroxyethyl methacrylate); PCL = poly(caprolactone)]. Next, the hydroxyl end groups of PHEMA–PCL were converted to 2‐bromoesters, and this gave rise to macroinitiator PHEMA–PCL–Br for ATRP. Then, 2‐dimethylaminoethyl methacrylate or tert‐butyl methacrylate was polymerized from the macroinitiators, and this afforded the star‐block copolymers PHEMA–PCL–PDMA [PDMA = poly(2‐dimethylaminoethyl methacrylate)] and PHEMA–PCL–PtBMA [PtBMA = poly(tert‐butyl methacrylate)]. Characterization by gel permeation chromatography and nuclear magnetic resonance confirmed the expected molecular structure. The hydrolysis of tert‐butyl ester groups of the poly(tert‐butyl methacrylate) blocks gave the star‐block copolymer PHEMA–PCL–PMAA [PMAA = poly(methacrylic acid)]. These amphiphilic star‐block copolymers could self‐assemble into spherical micelles, as characterized by dynamic light scattering and transmission electron microscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6534–6544, 2005  相似文献   

17.
This article describes the synthesis and characterization of [polystyrene‐b‐poly(2‐vinylpyridine)]n star‐block copolymers with the poly(2‐vinylpyridine) blocks at the periphery. A two‐step living anionic polymerization method was used. Firstly, oligo(styryl)lithium grafted poly(divinylbenzene) cores were used as multifunctional initiators to initiate living anionic polymerization of styrene in benzene at room temperature. Secondly, vinylpyridine was polymerized at the periphery of these living (polystyrene)n stars in tetrahydrofuran at ?78 °C. The resulting copolymers were characterized using size exclusion chromatography, multiangle laser light scattering, 1H NMR, elemental analysis, and intrinsic viscosity measurements. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3949–3955, 2007  相似文献   

18.
A facile synthetic approach of conjugated rod‐coil block copolymers with poly(para‐phenylene) as the rod block and polystyrene or polyethylene glycol as the coil block was developed. The block copolymers were synthesized through a TEMPO‐mediated radical polymerization of 3,5‐cyclohexadiene‐1,2‐diol‐derived monomers (diacetate, dibenzonate, and dicarbonate), followed by thermal aromatization of the polymer precursor. The living character of the polymerization and the structure of the copolymers were studied by NMR, GPC, TGA, and UV–vis spectroscopy. The average conjugation lengths of the copolymers were calculated according to their maxima in UV–vis spectroscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 800–808, 2007  相似文献   

19.
Three alternative routes, using the heterobifunctional macroinitiator technique, have been developed to obtain polystyrene–poly(tert‐butyl methacrylate)–poly(ethylene oxide) triarm star block copolymers. Only the route showing the reverse initiation of tert‐butyl methacrylate on potassium alkoxide leads to the pure star, whereas the other strategies lead to incomplete initiation because of either an increase in the side reactions, such as transesterification, or a decrease in the accessibility toward bulky catalysts. These limits are linked to the particular location of the initiating group at the junction of the two blocks of the copolymer precursor. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1745–1751, 2004  相似文献   

20.
Tetrakis(4‐(1‐bromoethyl)phenyl)silane is synthesized and utilized to initiate the atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) to generate bromo‐terminated four‐armed PMMA macroinitiators, which further initiate the ATRP of methylacryloyloxyl‐2‐hydroxypropyl perfluorooctanoate (FGOA) to create fluorinated star‐shaped block copolymers PMMA‐b‐poly(FGOA)s with fluorine content ranging from 0 to 31.7 wt %. The polymerizations are well controlled with the polydispersity indices <1.30. The polymers readily dissolve in common organic solvents and show good film‐formation. Compared with the nonfluorinated sample, the fluorinated films exhibit significantly increased water contact angles owing to the enrichment of fluorine on the surface. The enhanced hydrophobicity is advantageous for the optical stability when the devices work under a moist environment. Moreover, the films possess high thermo‐optic coefficients, tunable refractive indices, and extremely low birefringence coefficients because of the presence of bulky and rigid tetraphenylsilane core and star‐shaped topological structure, showing potential application in optical waveguide devices. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1969–1977  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号