首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Helical fibers in micro/nanoscale resembling plant tendrils have been of increasing interest due to their unique characteristics. Fabrication of helical microfibers from polymer blends using melt blowing technique is reported in this study. An elastomeric and a stiff polymer are chosen as the raw materials, and a designed swirl‐die melt‐blowing device is used to prepare the microfibrous nonwovens. Focusing on the interfacial interaction between the polymer components induced by the polymer structure and intrinsic properties, airflow field characteristics, and processing parameters, we explore the effects of various parameters on helical fiber formation. Differential scanning calorimeter is employed to examine the rigidity of polymer chains, and the three‐dimensional airflow field simulation is carried out to reveal the airflow field characteristics. This work can provide a promising technique for producing stretchable microfibrous materials which have potential applications in field such as filtration materials and oil sorbents. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 970–977  相似文献   

2.
The phase structure and clay dispersion in polyamide‐6(PA6)/polypropylene(PP)/organoclay (70/30/4) systems with and without an additional 5 parts of maleated polypropylene (MAH‐g‐PP) as a compatibilizer were studied with atomic force microscopy (AFM). AFM scans were taken from the polished surface of specimens that were chemically and physically etched with formic acid and argon ion bombardment, respectively. The latter technique proved to be very sensitive to the blend morphology, as PP was far more resistant to ion bombardment than PA6. In the absence of the MAH‐g‐PP compatibilizer, the organoclay is located in the PA6 phase; this finding is in line with transmission electron microscopic results. Further, the PP is coarsely dispersed in PA6 and the adhesion between PA6 and PP is poor. The addition of MAH‐g‐PP resulted in a markedly finer PP dispersion and good interfacial bonding between PA6 and PP. In this blend, the organoclay was likely dispersed in the PA6‐grafted PP phase. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43:1198–1204, 2005  相似文献   

3.
Reactive melt blends of an ethylene‐propylene‐diene terpolymer (EPDM) based thermoplastic elastomer (TPE), maleic anhydride grafted polypropylene (MAH‐g‐PP), and nylon 6 were prepared in a single screw extruder and evaluated in terms of morphological, rheological, thermal, dynamic mechanical, and mechanical properties of the blends. It was found that MAH‐g‐PP‐co‐nylon 6 copolymers were in situ formed and acted as effective compatibilizers for polypropylene (PP) and nylon 6. Phase separation of PP and EPDM in TPE increased with the addition and increasing amount of MAH‐g‐PP and nylon 6, leading to decreased glass transition temperature (Tg) of TPE and increased crystalline melting temperature (Tm) of PP. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
Polypropylene (PP)/organo‐montmorillonite (Org‐MMT) nanocomposites toughened with maleated styrene‐ethylene‐butylene‐styrene (SEBS‐g‐MA) were prepared via melt compounding. The structure, mechanical properties, and dynamic mechanical properties of PP/SEBS‐g‐MA blends and their nanocomposites were investigated by X‐ray diffraction (XRD), polarizing optical microscopy (POM), tensile, and impact tests. XRD traces showed that Org‐MMT promoted the formation of β‐phase PP. The degree of crystallinity of PP/SEBS‐g‐MA blends and their nanocomposites were determined from the wide angle X‐ray diffraction via profile fitting method. POM experiments revealed that Org‐MMT particles served as nucleating sites, resulting in a decrease of the spherulite size. The essential work of fracture approach was used to evaluate the tensile fracture toughness of the nanocomposites toughened with elastomer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3112–3126, 2005  相似文献   

5.
The compatibilizing effect of polypropylene (PP) grafted with hyperbranched polymers (PP–HBP) has been investigated in PP/polyamide‐6 (PA‐6) blends. Because of its high reactivity and diffusitivity, PP–HBP has been shown to be a more effective compatibilizer in decreasing the interfacial tension than the commonly used maleic anhydride–grafted polypropylene (PP–MAH). This article describes the influence of PP–HBP and PP–MAH on the interfacial tension between PP and PA‐6, as measured by the deformed drop‐retraction method (DDRM). Overall, PP–HBP yielded lower interfacial tension values between PP and PA‐6, which resulted in a finer particle size of the secondary phase. The time dependence of the interfacial tension can be monitored by DDRM, enabling evaluation of the diffusitivity and reactivity of the compatibilizer. A model based on particle coarsening has been developed to describe the time dependence of the interfacial tension. This model showed that the diffusitivity and reactivity for PP–HBP was higher than that of PP–MAH. Therefore, PP–HBP has strong potential as a compatibilizer in diffusitivity‐dependant processes such as film coextrusion and fusion bonding. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2069–2077, 1999  相似文献   

6.
《先进技术聚合物》2018,29(8):2344-2351
The recycled polypropylene/recycled high‐impact polystyrene (R‐PP/R‐HIPS) blends were melt extruded by twin‐screw extruder and produced by injection molding machine. The effects of polystyrene‐b‐poly(ethylene/propylene)‐b‐polystyrene copolymer (SEPS) used as compatibilizer on the mechanical properties, morphology, melt flow index, equilibrium torque, and glass transition temperature (Tg) of the blends were investigated. It was found that the notch impact strength and the elongation at break of the R‐PP/R‐HIPS blends with the addition of 10 wt% SEPS were 6.46 kJ/m2 and 31.96%, which were significantly improved by 162.46% and 57.06%, respectively, than that of the uncompatibilized blends. Moreover, the addition of SEPS had a negligible effect on the tensile strength of the R‐PP/R‐HIPS blends. Additionally, the morphology of the blends demonstrated improved distribution and decreased size of the dispersed R‐HIPS phase with increasing the SEPS content. The increase of the melt flow index and the equilibrium torque indicated that the viscosity of the blends increased when the SEPS was incorporated into the R‐PP/R‐HIPS blends. The dynamic mechanical properties test showed that when the content of SEPS was 10 wt%, the difference of Tg decreased from 91.72°C to 81.51°C. The results obtained by differential scanning calorimetry were similar to those measured by dynamic mechanical properties, indicating an improved compatibility of the blends with the addition of SEPS.  相似文献   

7.
The toughening effect of ethylene‐vinyl acetate rubbers (EVM) with maleated ethylene‐vinyl acetate copolymers (EVA‐g‐MAH) on the nylon 1010 was investigated. The addition of 5 phr (per hundred nylon 1010) EVM increased the elongation at break of nylon 1010 to a great extent. The notched Izod impact strength of nylon/EVM blends increased with increasing EVM content. Scanning electron microscope showed that the EVM particle size was around 0.5 μm when the EVM content was 5 phr and increased with increasing EVM content. After the addition of EVA‐g‐MAH to nylon/EVM (100/20) blend, the average diameter of EVM particles decreased from more than 1 μm to 0.5–0.6 μm. EVA‐g‐MAH could improve the adhesion between nylon 1010 and EVM. A sharp brittle‐ductile transition (BDT) was observed when the interparticle distance was about 0.2 μm, independent of the addition of EVA‐g‐MAH. The notched Izod impact strength of nylon/EVM blends at low temperatures was measured and the BDT shifted toward low temperatures with increasing EVM or EVA‐g‐MAH content. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 434–444, 2009  相似文献   

8.
The structure and mechanical properties of injection‐molded bars of high‐density polyethylene (HDPE)/PA6 blends were studied in this article. The experimental results showed that the morphologies of injection‐molded bars change gradually along the flow direction, which is tightly related to the melt viscosity and processing conditions. The higher melt viscosity, lower mold temperature, and shorter packing time, restricting the macromolecular relaxation, enhance the difference in morphologies and properties at near and far parts of a mold. An injection‐molded bar (namely H2C5), consisting of 75 wt % of HDPE, 20 wt % of PA6, and 5 wt % of compatibilizer (HDPE‐g‐MAH), showed a greater difference in mechanical properties at near and far parts because of its higher melt viscosity. A clear interface between the skin and core layers of near part in it leads to a much higher impact strength than that of far part. And tensile tests show that its tensile strength of near part is higher than that of far part due to the higher orientation degrees of HDPE matrix and PA6 dispersed phase in near part. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 184–195, 2007  相似文献   

9.
Graft copolymerization of low‐density polyethylene (LDPE) with a maleic anhydride (MAH) was performed using intermeshing corotating twin‐screw extruder in the presence of benzoyl peroxide (BPO). The LDPE/polyamide 6 (PA6) and LDPE‐g‐MAH/PA6 blends were prepared in a corotating twin‐screw extruder. The melt viscosity of the grafted LDPE was measured by a capillary rheometer. The grafted copolymer was characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microcopy (SEM). The influence of the variation in temperature, BPO and MAH concentration, and temperature on the grafting degree and on the melt viscosity was studied. The grafting degree increased appreciably up to about 0.45 phr and then decreased continuously with an increasing BPO concentration. According to the FTIR analysis, it was found that the amount of grafted MAH on the LDPE chains was ~5.1%. Thermal analysis showed that melting temperature of the graft copolymers decreases with increasing grafting degree. In addition to this, loss modulus (E″) of the copolymers first increased little with increasing grafting and then obviously decreased with increasing grafting degree. Furthermore, the results revealed that the tensile strength of the blends increased linearly with increasing PA6 content. The results of SEM and mechanical test showed that the blends have good interfacial adhesion and good stability of the phase structure, which is reflected in the mechanical properties. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 267–275, 2010  相似文献   

10.
This study describes the morphology and nonisothermal crystallization kinetics of poly(ethylene terephthalate) (PET)/isotactic polypropylene (iPP) in situ micro‐fiber‐reinforced blends (MRB) obtained via slit‐extrusion, hot‐stretching quenching. For comparison purposes, neat PP and PET/PP common blends are also included. Morphological observation indicated that the well‐defined microfibers are in situ generated by the slit‐extrusion, hot‐stretching quenching process. Neat iPP and PET/iPP common blends showed the normal spherulite morphology, whereas the PET/iPP microfibrillar blend had typical transcrystallites at 1 wt % PET concentration. The nonisothermal crystallization kinetics of three samples were investigated with differential scanning calorimetry (DSC). Applying the theories proposed by Jeziorny, Ozawa, and Liu to analyze the crystallization kinetics of neat PP and PET/PP common and microfibrillar blends, agreement was found between our experimental results and Liu's prediction. The increases of crystallization temperature and crystallization rate during the nonisothermal crystallization process indicated that PET in situ microfibers have significant nucleation ability for the crystallization of a PP matrix phase. The crystallization peaks in the DSC curves of the three materials examined widened and shifted to lower temperature when the cooling rate was increased. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 374–385, 2004  相似文献   

11.
The multiwalled carbon nanotubes/polypropylene nanocomposites (PP/CNTs) were prepared by melt mixing using maleic anhydride grafted polypropylene (mPP) as the compatibilizer. The effect of mPP on dispersion of CNTs was then studied using the tool of rheology, aiming at relating the viscoelastic behaviors to the mesoscopic structure of CNTs. To further explore the kinetics of hybrid formation, a multilayered sample with alternatively superposed neat mPP and binary PP/CNTs microcomposites (without addition of mPP) sheets was prepared and experienced dynamic annealing in the small amplitude oscillatory shear flow. The results show that melt blending CNTs with PP can only yield the composites with microscale dispersion of CNTs, while adding mPP promotes nanoscale dispersion of CNTs as smaller bundles or even as individual nanotubes, reducing percolation threshold as a result. However, the values of apparent diffusivities of the composites are in same order with that of self‐diffusion coefficients of the neat PP, indicating that the presence of detached CNTs nearly does not inhibit PP chain motion. Hence, the activation energy of hybrid formation is close to the self‐diffusion of PP. This also indicates that although addition of mPP can improve the compatibility between CNTs and PP thermodynamically, those dynamic factors, such as shear flow, however, may be the dominant role on hybrid formation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 608–618, 2009  相似文献   

12.
PP/PP-g-MAH/PA6共混物结构与可纺性研究   总被引:3,自引:0,他引:3  
运用DSC、SEM、纺丝成形等手段研究了增容剂聚丙烯接枝马来酸酐 (PP g MAH)对聚丙烯 聚酰胺 6(PP PA6 )共混物结构和性能的影响 .结果表明 ,共混物呈典型海岛型两相结构 ;增容剂PP g MAH与PA6之间的在位反应改善了PP PA6共混体系的相容性 ,使共混物中PA6的热结晶峰消失 ,PP的结晶生长速率和成核速率降低 ,可纺性提高  相似文献   

13.
The effects of preparation method, composition, and thermal condition on formation of β‐iPP in isotactic polypropylene/ethylene–propylene rubber (iPP/EPR) blends were studied using modulated differential scanning calorimeter (MDSC), wide angle X‐ray diffraction (WAXD), and phase contrast microscopy (PCM). It was found that the α‐iPP and β‐iPP can simultaneity form in the melt‐blended samples, whereas only α‐iPP exists in the solution‐blended samples. The results show that the formation of β‐iPP in the melt‐blended samples is related to the crystallization temperature and the β‐iPP generally diminishes and finally vanishes when the crystallization temperature moves far from 125 °C. The phenomena that the lower critical temperature of β‐iPP in iPP/EPR obviously increases to 114 °C and the upper critical temperature decreases to 134 °C indicate the narrowing of temperature interval, facilitating the formation of β‐iPP in iPP/EPR. Furthermore, it was found that the amount of β‐iPP in melt‐blended iPP/EPR samples is dependent on the composition and the maximum amount of β‐iPP formed when the composition of iPP/EPR blends is 85:15 in weight. The results through examining the effect of annealing for iPP/EPR samples at melt state indicate that this annealing may eliminate the susceptibility to β‐crystallization of iPP. However, only α‐iPP can be observed in solution‐blended samples subjected to annealing for different time. The PCM images demonstrate that an obvious phase‐separation happens in both melt‐blended and solution‐blended iPP/EPR samples, implying that compared with the disperse degree of EPR in iPP, the preparation method plays a dominant role in formation of β‐iPP. It is suggested that the origin of formation of β‐iPP results from the thermomechanical history of the EPR component in iPP/EPR. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1704–1712, 2007  相似文献   

14.
The maleic anhydride‐grafted multiwalled carbon nanotubes (MWCNTs‐g‐MA) have been introduced into polypropylene/ethylene‐co‐vinyl acetate (PP/EVA) blend. To clearly describe the effects of MWCNTs‐g‐MA on the morphology and mechanical properties of PP/EVA blends, the selective distribution of MWCNTs‐g‐MA in the blends is realized through different sample preparation methods, namely, MWCNTs‐g‐MA disperse in EVA phase and MWCNTs‐g‐MA disperse in PP matrix. The results show that the distribution of MWCNTs‐g‐MA has an important effect on the final morphology of EVA and the crystallization structure of PP matrix. Compared with PP/EVA binary blend, distribution of MWCNTs‐g‐MA in PP matrix induces the aggregation of EVA phase at high EVA content and the decrease of spherulite diameters of PP matrix simultaneously. However, when MWCNTs‐g‐MA are dispersed in the EVA phase, they induce more homogeneous distribution of EVA, and the crystallization behavior of PP is slightly affected by MWCNTs‐g‐MA. The corresponding mechanical properties including impact strength and tensile strength are tested and analyzed in the work. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1481–1491, 2009  相似文献   

15.
Uncompatibilized and compatibilized (polypropylene‐grafted maleic anhydride (PP‐g‐MA) as compatibilizer) PET (polyethylene terephthalate)/PP (polypropylene)/TiO2 drawn strands were prepared by extrusion of the blends and cold drawing of the extrudates. In the uncompatibilized drawn strand, the generated PET microfibrils show large aspect ratio and wide distribution in diameter; whereas in the compatibilized drawn strand numbers of short needle‐like PET formations appear and demonstrate uniform diameter distribution. Derived from PET droplets, the microfibril morphology is greatly influenced by the size of PET droplets in the extrudates: small droplet deforms into needle‐like shape and large one becomes microfibril. In the compatibilized PET/PP/TiO2 extrudate, the size of PET droplet is much smaller than that in the uncompatibilized one. The reduction of droplet size is attributed to the low viscosity ratio between dispersed phase and matrix, which facilitates the break up of the dispersed PET droplets. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 555–562, 2009  相似文献   

16.
A multifunctional epoxy resin has been demonstrated to be an efficient reactive compatibilizer for the incompatible and immiscible blends of polyamide‐6 (PA 6) and polybutylene terephthalate (PBT). The torque measurements give indirect evidence that the reaction between PA and PBT with epoxy has an opportunity to produce an in situ formed copolymer, which can be as an effective compatibilizer to reduce and suppress the size of the disperse phase, and to greatly enhance mechanical properties of PA/PBT blends. The mechanical property improvement is more pronounced in the PA‐rich blends than that in the PBT‐rich blends. The fracture behavior of the blend with less than 0.3 phr compatibilizer is governed by a particle pullout mechanism, whereas shear yielding is dominant in the fracture behavior of the blend with more than 0.3 phr compatibilizer. As the melt and crystallization temperatures of the base polymers are so close, either PA or PBT can be regarded as a mutual nucleating agent to enhance the crystallization on the other component. The presence of compatibilizer and in situ formed copolymer in the compatibilized blends tends to interfere with the crystallization of the base polymers in various blends. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 23–33, 2000  相似文献   

17.
Liquid crystalline polymer–poly(butylene terephthalate) (LCP/PBT) blends were prepared by melt mixing. The LCP employed was a thermotropic copolyesteramide based on 30 mol % of p‐amino benzoic acid (ABA) and 70 mol % of poly(ethylene terephthalate) (PET). The thermal, dynamic mechanical and rheological properties, morphology, and crystal structure of LCP/PBT blends were studied. The results showed that the semiflexible ABA30/PET LCP is miscible in the melt state with PBT, and they are partial miscible in the solid state. Differential scanning calorimetric measurements showed that the introduction of the semiflexible LCP into LCP/PBT blends retards the crystallization rate of PBT. However, the LCP dispersed phase acted as the sites for the nucleation of spherulites and enhance the degree of crystallinity of PBT. Hot‐stage optical microscopy examination revealed that the LCP microfibers with random orientation are dispersed in the PBT matrix of compression molded LCP/PBT blends. Under the application of a shearing force, the LCP domains in the PBT matrix tended to deform into microfibers, and to orient themselves along the flow direction. The formation of microfibers resulted in an increase of the storage modulus. The torque measurements indicated that the melting viscosity of the LCP/PBT blends is much lower than that of the pure PBT. Finally, the wide‐angle X‐ray diffraction patterns indicated that PBT shows no structural change with the incorporation of LCP, but the apparent crystal sizes of several diffraction planes change significantly. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 403–414, 2000  相似文献   

18.
Impact‐modified polypropylene (PP)/vermiculite (VMT) nanocomposites toughened with maleated styrene–ethylene butylene–styrene (SEBS‐g‐MA) were compounded in a twin‐screw extruder and injection‐molded. VMT was treated with maleic anhydride, which acted both as a compatibilizer for the polymeric matrices and as a swelling agent for VMT in the nanocomposites. The effects of the impact modifier on the morphology and the impact, static, and dynamic mechanical properties of the PP/VMT nanocomposites were investigated. Transmission electron microscopy revealed that an exfoliated VMT silicate layer structure was formed in ternary (PP–SEBS‐g‐MA)/VMT nanocomposites. Tensile tests showed that the styrene–ethylene butylene–styrene additions improved the tensile ductility of the (PP–SEBS‐g‐MA)/VMT ternary nanocomposites at the expense of their tensile stiffness and strength. Moreover, Izod impact measurements indicated that the SEBS‐g‐MA addition led to a significant improvement in the impact strength of the nanocomposites. The SEBS‐g‐MA elastomer was found to be very effective at converting brittle PP/VMT organoclay composites into tough nanocomposites. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2332–2341, 2003  相似文献   

19.
The compatibilization effect of linear low‐density polyethylene‐grafted maleic anhydride (LLDPEgMA) and high‐density polyethylene‐grafted maleic anhydride (HDPEgMA) on high‐density polyethylene (HDPE)/polyamide 6 (Nylon 6) blend system is investigated. The morphology of 45 wt %/55 wt % polyethylene/Nylon 6 blends with three compatibilizer compositions (5 wt %, 10 wt %, and 15 wt %) are characterized by atomic force microscopic (AFM) phase imaging. The blend with 5 wt % LLDPEgMA demonstrates a Nylon 6 continuous, HDPE dispersed morphology. Increased amount of LLDPEgMA leads to sharp transition in morphology to HDPE continuous, Nylon 6 dispersed morphology. Whereas, increasing HDPEgMA concentration in the same blends results in gradual morphology transition from Nylon 6 continuous to co‐continuous morphology. The mechanical properties, oxygen permeability, and water vapor permeability are measured on the blends which confirm the morphology and indicate that HDPEgMA is a better compatibilizer than LLDPEgMA for the HDPE/Nylon 6 blend system. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 281–290  相似文献   

20.
The in situ microfibrillar blend of poly(ethylene terephthalate) (PET)/isotactic polypropylene (iPP) was fabricated through a slit die extrusion, hot stretch, and quenching process. The morphological observation indicates that while the unstretched blend appears to be a common incompatible morphology, the hot stretched blends present PET in situ fibers whose characteristics, such as diameter and aspect ratio, are dependent on the hot stretching ratio (HSR). When the HSR is low, the elongated dispersed phase particles are not uniform at all. As the HSR is increased to 16.1, well‐defined PET microfibers were generated in situ, whose diameter is rather uniform and is around 0.6 ~ 0.9 μm. The presence of the PET phase shows significant nucleation ability for crystallization of iPP. Higher HSR corresponds to faster crystallization of the iPP matrix, while as HSR is high up to a certain level, its variation has little influence on the onset and maximum crystallization temperatures of the iPP matrix during cooling from melt. Optical microscopy observation reveals that transcrystalline layers form in the microfibrillar blend, in which the PET microfibers play as the center row nuclei. In the as‐stretched microfibrillar blends, small‐angle X‐ray scattering measurements show that matrix iPP lamellar crystals have the same orientation as PET lamella. The long period of lamellar crystals of iPP is not affected by the presence of PET micofibers. Wide‐angle X‐ray scattering reveals that the β phase of iPP is obtained in the as‐stretched blends, whose concentration increases with the increase of the HSR. This suggests that finer PET microfibers can promote the occurrence of the β phase. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4095–4106, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号