首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tough hydrogels have great potentials in soft robotics, artificial muscles, tissue replacement, and so on. Here we introduce novel tough hydrogels crosslinked by triblock copolymer (F127DA) micelles and metal coordination. The gels showed outstanding tensile strength (∼1–11 MPa), toughness (∼4–32 MJ m−3), and excellent self‐recovery properties (∼56.8–87.2% toughness recovery in 9 min at room temperature). The mechanical and self‐recovery properties could be manipulated by varying contents of micelles and/or COO groups. Dynamic mechanical analysis of the hydrogels revealed apparent activation energy and relaxations for both physical interactions. In situ small‐angle X‐ray scattering measurements on hydrogels upon stretching revealed micelle deformations. XPS measurements on hydrogels before and after stretching revealed significant changes in the binding energy of Fe3+ ions in the gels, suggesting the rupture of coordination bonds. The experimental results strongly suggest a synergistic effect from the micelle‐crosslinking and Fe3+–COO coordination on the strength, toughness, and self‐recovery of the hydrogels. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 865–876  相似文献   

2.
Supramolecular polyurethane ureas are expected to have superior mechanical properties primarily due to the reversible, noncovalent interactions such as hydrogen bonding interactions. We synthesized polyurethane prepolymers from small molecular weight of poly(tetramethylene ether)glycol and isophorone diisocyanates, which were end capped with propylamine to synthesize polyurethane ureas with high contents of urea and urethane groups for hydrogen‐bonding formations to facilitate self‐healing. The effects of polyurethane urea molecular weight (3000 ≤ Mn ≤ 9000), crosslinking, and cutting direction were studied in terms of thermal, mechanical, and morphological properties with an emphasis on the self‐healing efficiency. It was found that the thermal self‐healability was more pronounced as the molecular weight of polyurethane urea decreased, showing a maximum of more than 96% with 3000 Mn when the sample was cut along the stretch direction. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 468–474  相似文献   

3.
A study of the reactions between various furan and maleimide model compounds and the effects of reaction conditions was performed, allowing for a proper design and preparation of a thermo‐reversible polyurethane (PU) material crosslinked via Diels–Alder (DA) bonds. Thus, a linear polyurethane containing furan groups along the main chain was synthesized and crosslinked with a bismaleimide by means of DA reaction. The obtained thermoset exhibited thermo‐reversibility as evidenced by DSC and FTIR microscopy, providing the material recyclability and scratch healability. Optical microscopy, SEM and tensile analysis of a scratched PU film revealed that efficient scratch healing was enabled by heating at 110 °C for 30 min and subsequently keeping at room temperature for 24 h, resulting in an approximately 80% recovery of the pristine mechanical strength. This material is a promising candidate for the development of self‐healing coatings. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1806–1814  相似文献   

4.
Motivated by the growing demand for greener and sustainable polymer systems, self‐healing elastomers were prepared by emulsion polymerization of terpene and furfural‐based monomers. Both the method and the monomers were green and sustainable. The synthesized copolymers showed molecular weights between 59,080 and 84,210 Da and glass‐transition temperature (Tg) between ?25 and ?40 °C, implying rubbery properties. A set of one‐dimensional (1D) and two‐dimensional (2D) NMR spectroscopy supported the formation of the copolymer and nuclear spin–spin coupling in the copolymer. Reactivity ratios were determined by conventional linear method. A thermoreversible network was achieved for the first time by reacting the furan‐based polymer with bismaleimide (BM) as a crosslinker, via a Diels?Alder (DA) coupling reaction. The reversible nature of the polymer network was evidenced from infrared and NMR spectroscopy. The thermoreversible character of the DA crosslinked adduct was confirmed by applying retro‐DA reaction (observed in differential scanning calorimeter [DSC] analysis) and mechanical recovery was verified by repeated heating and cooling cycles. The network polymers displayed excellent self‐healing ability, triggered by heating at 130 °C for 4–12 h, when their scratched surface was screened by microscopic visualization. The healing efficiency of the crosslinked DA‐adduct was calculated as 78%, using atomic force microscopy. This work provides a green and efficient approach to prepare new green and functional materials. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 738–751  相似文献   

5.
Dual‐crosslinked supramolecular elastomers with the hybrid network consisting of hydrogen bonds and covalent bonds combine the reversibility of hydrogen bond and mechanical properties of covalent crosslinking network. In this article, isocyanate mixture is used as curing agent to prepare dual‐crosslinked elastomer based on bifunctional polydimethylsiloxane under mild condition. This method can effectively build up a hybrid network with the designed structure. A series of elastomers with same hydrogen bond density and variable covalent crosslinking degree are obtained. Swelling measurements and 1H‐NMR spectra confirm the feasibility and controllability of curing method, the increasing of bifunctional isocyanate give rise to higher covalent crosslinking degree, improving the solvent resistance. The studies on viscoelastic property show that the introduction of an irreversible covalent crosslinking network stabilize the hybrid network, restrain the chain movement. The mechanical and self‐healing property studies reveal that the covalent crosslink significantly reinforce the whole network, while the reparable strength seems to mainly depend on the hydrogen bond density. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3760–3768  相似文献   

6.
The dynamic chemistry of disulfide bonds has emerged as one of the most powerful tools used for the fabrication of organic compounds and self‐healing materials. In this article, a novel aromatic amine‐terminated polysulfide oligomer is first synthesized from thiol‐terminated polysulfide oligomer and bis(4‐aminophenyl) disulfide via disulfide metathesis mechanism. The resulting oligomer is confirmed by FTIR and 1H NMR spectra and then successfully applied in constructing self‐healable polyurea material (A‐LP23‐I), which combines the advantages of higher strength of polyureas and excellent self‐healing ability of polysulfide‐based materials. After subjecting to a temperature of 75 °C for 48 h, both the tensile strength and ultimate elongation of A‐LP23‐I restore to more than 90% of the original values (3.32 MPa and 396%). This study demonstrates a novel strategy for synthesizing aromatic amine‐terminated oligomer. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1460–1466  相似文献   

7.
The crosslinked structure formed by the metal coordination bonding provides excellent and new properties for rubber materials. Herein, the crosslinking of acrylonitrile‐butadiene rubber (NBR) is induced by introducing aluminum ammonium sulfate (NH4Al(SO4)2·12H2O) particles. The crosslinking behavior, morphology, mechanical properties, and the Akron abrasion resistance of NBR/NH4Al(SO4)2·12H2O composites were fully explored. The results show that the three‐dimensional crosslinking structure is held together by metal–ligand coordination bonds between the nitrile group and AI(III). The coordination crosslink density exhibits a considerable increase with the addition of NH4Al(SO4)2·12H2O. Thus, the mechanical properties and abrasion resistance of the obtained composites are better than that of NBR/sulfur system. Interestingly, the elongation at break for NBR/NH4Al(SO4)2·12H2O composites is over 2000% due to the nature of coordination bonds. The abrasion volume loss decreases to 0.4 cm3 for NBR/NH4Al(SO4)2·12H2O composites with 20 phr NH4Al(SO4)2·12H2O particles as compared to 0.75 cm3 for NBR/sulfur system. The obtained NBR composites with facile preparation and excellent mechanical properties make the composites based on metal coordination bonding attractive for practical use. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 879–886  相似文献   

8.
A route from naturally occurring myo‐inositol to hydroxyl‐bearing polyurethanes has been developed. The diol prepared from the bis‐acetalization of myo‐inositol with 1,1‐dimethoxycyclohexane was reacted with a rigid diisocyanate, 1,3‐bis(isocyanatomethyl)cyclohexane to afford the corresponding polyurethane, of which glass transition temperature (Tg) was quite high as 192 °C. The polyurethane contains side chains inherited from the acetal moieties of the diol monomer and was treated with trifluoroacetic acid to hydrolyze the acetal moieties and afford the target polyurethane functionalized with hydroxyl groups. The presence of many hydroxyl groups in the side chains, which can form hydrogen bonds with each other, resulted in a high Tg, 186 °C. In addition, the hydroxyl groups were reacted with isocyanates to achieve further side‐chain modifications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1358–1364  相似文献   

9.
In this work, pendant groups with both furan and maleimide moieties were incorporated into a polymethacrylate copolymer with lauryl methacrylate as comonomer to yield a one‐system Diels–Alder (DA) polymer. A combined Fourier transform infrared (FTIR) spectroscopy and rheological study was performed to quantify the extent of the reversible DA reaction and the resulting changes in mechanical properties of the polymer. The kinetics of the retro‐Diels–Alder (rDA) reaction was studied at different temperatures to determine an enthalpy of activation. Control polymers with only one functional moiety, that is, the furan or maleimide, were also synthesized to study the differences in viscoelastic behavior and the absence of self‐healing. Microscratch tests were performed to obtain information about the disappearance of well‐defined intentional surface scratches under different healing conditions. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1669–1675  相似文献   

10.
Toward the goal of smart sensor systems for wearable electronics, polymer microfiber‐based free‐standing sensors benefit from excellent flexibility, decent ductility, and easy wearability in comparison with thin‐film‐based sensing devices. Herein, we report a hydrophobic and conducting single‐strand microfiber‐based liquid‐phase chemical sensor consisting of polyurethane (PU), tin oxide (SnO2), and carbon nanotube (CNT) composites with applying a (1H,1H,2H,2H‐heptadecafluorodec‐1‐yl) phosphonic acid (HDF‐PA)‐based self‐assembled monolayer. The free‐standing HDF‐PA‐treated PU–SnO2–CNT composite microfiber showing selective filtering properties with the repellency of water and the penetration of an organic solvent is electrically and mechanically characterized. Finally, the single‐strand HDF‐PA‐treated PU–SnO2–CNT composite microfiber‐based chemical sensor, which shows excellent mechanical properties and aqueous stability, is demonstrated to detect the presence of a chemical in pure water or counterfeit gasoline in pure gasoline by observing mechanical changes, especially variations in the length and diameter of the fiber, and monitoring the electrical resistance change. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 495–502  相似文献   

11.
Previous studies on hydrogels crosslinked by acrylated PEO99–PPO65–PEO99 triblock copolymer (F127DA) micelles demonstrate outstanding strength and toughness, which is attributed to the efficient energy dissipation through the hydrophobic association in the micelles. The current study further focuses on how the solvent property affects the structures and the mechanical properties of F127DA micelle crosslinked polyacrylamide gels. Binary solvents comprised of dimethyl sulfoxide (DMSO) and water are used to adjust the polymer/solvent interactions, which consequently tune the conformations of the polymer chains in the network. The presence of DMSO significantly decreases the strength but increased the stretchability of the gels, whereas the overall tensile toughness remained unchanged. In situ small‐angle X‐ray scattering measurements reveal the deformation of micelles along with the stretching direction. A structure evolution mechanism upon solvent change is proposed, according to the experimental observations, to explain influence of solvent quality on the mechanical properties of the micelle‐crosslinked gels. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 473–483  相似文献   

12.
Development of self‐healing hydrogels with thermoresponse is very important for artificial smart materials. In this article, the self‐healing hydrogels with reversible thermoresponses were designed through across‐linking‐induced thermoresponse (CIT) mechanism. The hydrogels were prepared from ketone group containing copolymer bearing tetraphenyl ethylene (TPE) and cross‐linked by naphthalene containing acylhydrazide cross‐linker. The mechanical property, light emission, self‐healing, and thermo‐response of the hydrogels were investigated intensively. With regulation of the copolymer composition, the hydrogels showed thermoresponse with the LCST varied from above to below body temperature. At the same time, the hydrogels showed self‐healing property based on the reversible characteristic of the acylhydrazone bond. The hydrogel also showed temperature‐regulated light emission behavior based on AIE property of the TPE unit. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 869–877  相似文献   

13.
Smart polymers are advanced materials that continue to attract scientific community. In this work, self‐healing waterborne polyurethane/reduced graphene oxide (SHWPU/rGO) nanocomposites were prepared by in situ chemical reduction of graphene oxide in a waterborne polyurethane matrix. The chemical structure, morphology, thermal stability, mechanical property, and electrical conductivity of the SHWPU/rGO nanocomposites were characterized. The prepared SHWPU/rGO nanocomposites were further treated under heating, microwave radiating, and electrifying conditions to investigate their healing property. The results showed that chemical reduction of graphene oxide was achieved using hydrazine hydrate as a reducing agent and the rGO was well dispersed in the SHWPU matrix. The thermal stability and mechanical properties of SHWPU/rGO nanocomposites were significantly increased. The SHWPU/rGO nanocomposites can be healed via different methods including heating, microwave radiating, and electrifying. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 202–209  相似文献   

14.
Histidine functional block copolymers are thermally self‐assembled into polymer micelles with poly‐N‐isopropylacrylamide in the core and the histidine functionality in the corona. The thermally induced self‐assemblies are reversible until treated with Cu2+ ions at 50 °C. Upon treatment with 0.5 equivalents of Cu2+ relative to the histidine moieties, metal‐ion coordination locks the self‐assemblies. The self‐assembly behavior of histidine functional block copolymers is explored at different values of pH using DLS and 1H NMR. Metal‐ion coordination locking of the histidine functional micelles is also explored at different pH values, with stable micelles forming at pH 9, observed by DLS and imaged by atomic force microscopy. The thermal self‐assembly of glycine functional block copolymers at pH 5, 7, and 9 is similar to the histidine functional materials; however, the self‐assemblies do not become stable after the addition of Cu2+, indicating that the imidazole plays a crucial role in metal‐ion coordination that locks the micelles. The reversibility of the histidine‐copper complex locking mechanism is demonstrated by the addition of acid to protonate the imidazole and destabilize the polymer self‐assemblies. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1964–1973  相似文献   

15.
Combining stretchability and self‐healing properties in a man‐made material is a challenging task. For an efficient self‐healing material, weaker dynamic or reversible bonds should be presented as crosslinks so that they will first break upon damage and then reform after healing, which is not favorable when developing elastic materials. In this work, by incorporating dynamic Fe(III)‐triazole coordination bonds into polydimethylsiloxane (PDMS) backbone, a highly elastic polymer is obtained that can be thermally healed at mild temperature. The as‐prepared polymer can be stretched to 3400% strain at low loading speed (1 mm min–1). When damaged, the polymer can be thermally healed at 60 °C for 20 h with a healing efficiency of over 90%. The good mechanical and healable properties of this polymer can be ascribed to the unique coordination bond strength and coordination conformation of Fe(III)‐triazole coordination complex.

  相似文献   


16.
Engineering of molecular stacking arrangement via environmental stimuli is of particular interest in stimuli‐responsive self‐assembling architectures. A novel dual photo‐functionalized diacetylene ((Z)‐CNBE‐DA) molecule was synthesized, in which photo‐responsive cyanostilbene moieties exhibited interesting Z‐E isomerization upon UV light irradiation and could be utilized to modulate mesomorphism, molecular stacking arrangement and resulting polymerization behavior. Rod‐like (Z)‐CNBE‐DA could self‐assemble into well‐defined lamellar structures and the helical polydiacetylene (PDA) chains could be formed upon irradiation with circularly polarized ultraviolet light (CPUL). However, the bent‐shaped (E)‐CNBE‐DA molecules only self‐assembled into irregular loose packing, inhibiting the formation of ordered helical PDA chains upon CPUL irradiation. In this work, we established the links between chemical structures, molecular packing engineering and photophysical properties, which would be of great fundamental value for the rational design of smart soft materials. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2458–2466  相似文献   

17.
A unique 3‐D PbII coordination polymer containing ligands 1,2‐bis(4‐pyridyl)ethylene (bpe) and 3‐sulfobenzoate (3‐sb), [Pb(3‐sb)(bpe)0.5]n ( 1 ) has been synthesized by hydrothermal reaction and characterized by elemental analysis, IR, TGA, 1H NMR, powder X‐ray analysis, and fluorescent spectrum. The single‐crystal X‐ray analysis shows that eight coordination bonds can be divided as five primary bonds and three secondary bonds. The secondary bonds largely enhance the solid stability and provide a high‐dimensional network assembly. The complex also displays strong fluorescent property.  相似文献   

18.
Functional materials having the ability to self‐heal cracks or scratches after damage are of great interest for a huge scope of applications. Herein, we report a self‐healing polyurethane urea‐based material with implemented 1‐(2‐aminoethyl) imidazolidone (UDETA) as a chain terminating molecule and for hydrogen bond network formation. Both, UDETA content and moisture affected the self‐healing process. The reversible change in the materials properties was proven by detailed analyses of hardness and thermomechanical behavior in dependence of the water uptake of the samples. FT‐IR analysis revealed that water is able to act as a plasticizer interrupting hydrogen bonding interactions within the polymer network and thus, influencing glass transition temperature and hardness of the samples. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 537–548.  相似文献   

19.
A polyurea macromer (PUM) was synthesized and dispersed in basic conditions to form self‐assembled nanoparticles (<20 nm dispersions, up to 30 wt % aq. soln.). These nanoparticles enabled surfactant‐free emulsion polymerization to form hybrid polyurea‐acrylic particles despite the absence of a measureable water‐soluble fraction. The Tg of the starting PUM material was a strong function of the PUM's extent of neutralization and hydration (varying between 100 °C and >175 °C) due to changes in hydrogen and ionic bonding. Two separate hybrid polyurea‐acrylic emulsion systems were prepared: one by direct polymerization of (meth)acrylic monomers in the presence of the nanodispersion and a second by a physical blend of PUM nanodispersion with an acrylic latex control. The direct polymerization method resulted in a hybrid emulsion particle size that developed by a mechanism resembling conventional emulsion polymerization and was unlike that described for seeded polyurethane dispersion systems. Film hardness was shown to increase with increasing coating thickness for the hybrid film prepared by direct polymerization. The resulting mechanical properties could be explained by applying mechanical models for a composite foam structure. These results were unprecedented for normal elastomer films. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1373–1388  相似文献   

20.
A reversibly cross‐linked epoxy resin with efficient reprocessing and intrinsic self‐healing was prepared from a diamine Diels‐Alder (DA) adduct cross‐linker and a commercial epoxy oligomer. The newly synthesized diamine cross‐linker, comprising a DA adduct of furan and maleimide moieties, can cure epoxy monomer/oligomer with thermal reversibility. The reversible transition between cross‐linked state and linear architecture endows the cured epoxy with rapid recyclability and repeated healability. The reversibly cross‐linked epoxy fundamentally behaves as typical thermosets at ambient conditions yet can be fast reprocessed at elevated temperature like thermoplastics. As a potential reversible adhesive, the epoxy polymer with adhesive strength values about 3 MPa showed full recovery after repeated fracture‐thermal healing processes. The methodology explored in this contribution provides new insights in modification of conventional engineering plastics as functional materials. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2094–2103  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号