共查询到20条相似文献,搜索用时 15 毫秒
1.
William L. A. Brooks Gertjan Vancoillie Christopher P. Kabb Richard Hoogenboom Brent S. Sumerlin 《Journal of polymer science. Part A, Polymer chemistry》2017,55(14):2309-2317
Polymers with multiple tunable responses were achieved by incorporating boronic acid functionality along the backbone of a thermoresponsive polymer. The inherent Lewis acidity and diol‐sensitivity of boronic acid moieties allowed these polymers to respond to changes in pH and glucose concentration. Through reversible addition‐fragmentation chain transfer copolymerization of boronic acid‐containing monomers with N‐isopropylacrylamide, well‐defined block copolymers were synthesized containing a hydrophilic N,N‐dimethylacrylamide block and a second, responsive block with temperature‐dependent water solubility, making the resulting polymers capable of self‐assembly into nanostructures upon heating. By incorporating boronic acids within the thermoresponsive block, the cloud point of the polymer depended on the solution conditions, including pH and diol concentration, allowing tunable cloud point ranges. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2309–2317 相似文献
2.
This study presents electrostatically self‐assembled nanoparticles from linear flexible polyelectrolytes (poly(diallyldimethylammonium chloride or quarternized poly(4‐vinylpyridine)) and an ionic photo‐isomerizable azo dye (Acid Yellow 38) that can change their size upon UV‐light irradiation. Assemblies with narrow size distribution are stable in aqueous solution. For samples with under‐stoichiometric dye load, UV‐light exposure triggers a size decrease, e.g. from a hydrodynamic radius of Rh = 94 nm to Rh = 62 nm for an Ay38‐PDADMAC sample with a charge ratio of lcharge = 0.7. Size changes are caused by trans‐cis isomerization of the dye, accompanied by a change in hydrophilicity, binding enthalpy and entropy. Assemblies are characterized by static and dynamic light scattering, atomic force microscopy, UV–vis spectroscopy and isothermal titration calorimetry. Zeta potential measurements give insight into the electrostatic stabilization and size‐control of the ionic nano‐assemblies, revealing a master curve of effective surface charge density versus hydrodynamic radius. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys., 2013 相似文献
3.
Contamination of industrial sewage by organic dye pollutants is one of the most common challenges to the daily life. Decontamination can be achieved by adsorption and photodegradation of the pollutants. Herein, an effective visible light‐driven photocatalyst of polyoxometalate encapsulated in metal–organic gel was presented. The resulting composite was named PMA@ MOG‐Cr [PMA= H3PMo12O40, MOG= metal‐organic gel]. Photodegradation of dye pollutants with PMA@ MOG‐Cr were tested. The introduction of Phosphomolybdic Acid significantly enhanced the light‐absorption properties of MOG‐Cr. The PMA@MOG‐Cr showed an excellent photodegradation efficiency of MB, RhB and MO as high as 99% and 97% in 60 min and 91% in 120 min of visible‐light irradiation with only 10 mg photocatalyst, which was the highest among the tested samples MOG‐Cr, PMA@ MOG‐Cr and Degussa P‐25. The mechanism of the photodegradation of dye pollutants with H2O2 over PMA@MOG‐Cr under the visible light was further illustrated. The introduction of PMA promotes effective separation of electron–hole pair by trapping and transferring photogenerated electron. Thus, the two components act in synergy to result in much improved adsorption of certain common organic dyes as well as enhanced oxidative degradation. This work provides a new approach to design MOG encapsulated Polyoxometalate for visible light‐induced photodegradation of organic contaminants for the environmental remediation. 相似文献
4.
Ultrafine hydrogel fibers that were responsive to both temperature and pH signals were prepared through the electrospinning of poly(N‐isopropylacrylamide) (PNIPAAm) and poly(acrylic acid) mixtures in dimethylformamide. Both the diameters (700 nm to 1.2 μm) and packing of the fibers could be controlled through changes in the polymer compositions and PNIPAAm molecular weights. These fibers were rendered water‐insoluble by the addition of either Na2HPO4 or poly(vinyl alcohol) (PVA) to the solution, followed by the heat curing of the fibers. The fibers crosslinked with Na2HPO4 swelled to 30–120 times in water; this was significantly higher than the swelling of those crosslinked with PVA. The PVA‐crosslinked hydrogel fibers, however, exhibited faster swelling kinetics; that is, they reached equilibrium swelling in less than 5 min at 25 °C. They were also more stable after 1 week of water exposure; that is, they lost less mass and retained their fibrous form better. All the hydrogel fibers showed a drastic increase in the swelling between pH 4 and 5. The PVA‐crosslinked hydrogel fibers exhibited distinct temperature‐responsive phase‐transition behavior of PNIPAAm, whereas the Na2HPO4‐crosslinked hydrogel fibers showed altered two‐stage phase transitions that reflected side‐chain modification of PNIPAAm. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6331–6339, 2004 相似文献
5.
Stimuli-sensitive drug delivery systems—in particular, stimuli-sensitive polymeric hydrogels swollen with water—have attracted considerable attention in medical and pharmaceutical fields. This study concerns with the synthesis of thermosensitive polymeric organogels for controlled drug release; a copolymerization of stearyl acrylate (SA) with a cross-linker and the loading of indomethacin as a model lipophilic drug were accomplished in oleyl alcohol. The pulsatile (on-off) drug release was successfully conducted: release was halted at 36 °C and release occurred at over ca. 40 °C. This drug release pattern is suitable for thermochemotherapy combined with hyperthermia. The differential scanning calorimetric measurement suggests the following mechanism: the ordered crystalline structure, i.e., the alignment of hydrophobic alkyl side chains, works to prevent indomethacin diffusion from the organogel below the crystallization temperature, while the disordered amorphous structure above the melting temperature allows indomethacin to diffuse. 相似文献
6.
Reversibly light‐responsive biodegradable poly(carbonate) micelles constructed via CuAAC reaction 下载免费PDF全文
Ding Hu Hua Peng Yile Niu Yefei Li Yingchun Xia Ling Li Jingwen He Xiangyu Liu Xinnian Xia Yanbing Lu Weijian Xu 《Journal of polymer science. Part A, Polymer chemistry》2015,53(6):750-760
Light‐responsive poly(carbonate)s PEG113‐b‐PMPCn‐SP were synthesized via copper catalyzed azide‐alkyne cycloaddition reaction between azide‐modified spiropyran (SP‐N3) and amphiphilic copolymer PEG113‐b‐PMPCn. PEG113‐b‐PMPC25‐SP can self‐assemble to biocompatible micelles with an average diameter of ~96 nm and a critical aggregation concentration of 0.0148 mg mL?1. Under 365 nm UV light irradiation, the characteristic absorption intensity of merocyanine (MC) progressively increased and most of the micellar aggregations were disrupted within 10 min, suggesting the completion of the transformation of hydrophobic SP to hydrophilic MC. Subsequent exposuring the micelles to 620 nm visible light, spherical micelles aggregated again. The light‐controlled release and re‐encapsulation behaviors of coumarin 102‐loaded micelles were further investigated by fluorescence spectroscopy. This study provides a convenient way to construct smart poly(carbonate)s nanocarriers for controlled release and re‐encapsulation of hydrophobic drugs. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 750–760 相似文献
7.
Shaojian Lin Xia Huang Ronghui Guo Sheng Chen Jianwu Lan Patrick Theato 《Journal of polymer science. Part A, Polymer chemistry》2019,57(14):1580-1586
A novel nanofibrous mat featuring an ultraviolet (UV)‐induced CO2‐responsive behavior was fabricated via electrospinning and used as a controlled drug release system. First, a random copolymer for electrospinning, poly(N,N‐diethylaminoethyl acrylamide‐co‐N‐benzylacrylamide‐co‐N,N‐dimethyl‐N‐(2‐nitrobenzyl)‐ethaneamine acrylamide‐co‐4‐acryloyloxy benzophenone) [P(DEEA‐co‐BA‐co‐DMNOBA‐co‐ABP)], was prepared based on pentafluorophenyl esters via an “active ester‐amine” chemistry reaction. Subsequently, doxorubicin hydrochloride (DOX)‐loaded P(DEEA‐co‐BA‐co‐DMNOBA‐co‐ABP) nanofibers were fabricated, yielding a new drug‐loaded nanofibrous mat as a potential wound dressing. These DOX‐loaded nanofibers can respond to UV irradiation and CO2 stimulation. Interestingly, without UV irradiation, the fabricated nanofibers cannot exhibit any responsiveness. Therefore, the majority of the DOX was steadily stored in the nanofibers, even in the presence of CO2. However, upon UV irradiation, the CO2‐responsive behavior of the nanofibers was activated and the prepared nanofibers swelled slightly, resulting in the release of around 42% DOX from the nanofibers. Upon further purging with CO2, the release amount of DOX from the nanofibers could reach up to approximately 85%, followed by the morphological transition from a nanofibrous mat to a porous hydrogel film. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1580–1586 相似文献
8.
Biomimetic smart nanochannels have been studied extensively to achieve the precise ionic transport compared to biological ion channels. Similar to ion channels in living organisms, biomimetic smart nanochannels can respond to various stimuli, which allows for promising applications in many fields. In this review, we mainly summarize the recent advances in the design of biomimetic stimuli‐responsive nanochannels and their potential applications including biosensors and drug delivery. Finally, an outlook on the challenges and opportunities for biomimetic stimuli‐responsive nanochannels is provided. 相似文献
9.
Bing Han Nianchen Zhou Wei Zhang Zhenping Cheng Jian Zhu Xiulin Zhu 《Journal of polymer science. Part A, Polymer chemistry》2013,51(20):4459-4466
A stimuli‐responsive amphiphilic copolymer poly(NIPAMm‐b‐VBNBIn), including N‐isopropylacrylamide (NIPAM) as a thermoresponsive unit and 1‐(4‐vinyl benzyl)‐2‐naphthyl‐benzimidazole (VBNBI) as a sensitive fluorophore unit, was designed and synthesized by reversible addition‐fragmentation chain transfer polymerization. The aqueous solutions of the copolymers exhibited reversible fluorescent response to pH and temperature. In addition, the copolymers showed aggregation‐induced fluorescence enhancement in THF/water mixture. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4459–4466 相似文献
10.
Chih‐Hui Yang Chih‐Yu Wang Alexandru Mihai Grumezescu Andrew H.‐J. Wang Ching‐Ju Hsiao Zu‐Yu Chen Keng‐Shiang Huang 《Electrophoresis》2014,35(18):2673-2680
We report dual pH‐responsive microcapsules manufactured by combining electrostatic droplets (ESD) and microfluidic droplets (MFD) techniques to produce monodisperse core (alginate)‐shell (chitosan) structure with dual pH‐responsive drug release function. The fabricated core‐shell microcapsules were size controllable by tuning the synthesis parameters of the ESD and MFD systems, and were responsive in both acidic and alkaline environment, We used two model drugs (ampicillin loaded in the chitosan shell and diclofenac loaded in the alginate core) for drug delivery study. The results show that core‐shell structure microcapsules have better drug release efficiency than respective core or shell particles. A biocompatibility test showed that the core‐shell structure microcapsules presented positive cell viability (above 80%) when evaluated by the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay. The results indicate that the synthesized core‐shell microcapsules were a potential candidate of dual‐drug carriers. 相似文献
11.
Peng Liu Qian Tan Liangbo Xiang Hailiang Zhang 《Journal of polymer science. Part A, Polymer chemistry》2013,51(16):3429-3438
Three series of water‐soluble semi‐rigid thermo‐responsive polymers with well‐defined molecular weights based on mesogen‐jacketed liquid crystal polymers, poly[bis(N‐(2‐hydroxypropyl) pyrrolidone) 2‐vinylterephthalate] [P(2‐HPPVTA)], poly[bis(N‐(1‐methyl‐2‐hydroxyethyl) pyrrolidone) 2‐vinylterephthalate] [P(1‐M‐2‐HEPVTA)] and poly[bis(N‐hydroxypropyl pyrrolidone) 2‐vinylterephthalate] (PHPPVTA) have been synthesized via reversible addition‐fragmentation chain transfer polymerization. The steric hindrance effects on liquid crystalline property and thermo‐responsive behaviors of semi‐rigid water‐soluble polymers (P(2‐HPPVTA), P(1‐M‐2‐HEPVTA), and PHPPVTA) were carefully investigated. From molecular structure, the steric hindrance of P(1‐M‐2‐HEPVTA) is stronger than that of P(2‐HPPVTA). Polarized light microscope and one‐dimensional wide‐angle X‐ray diffraction revealed that both the P(2‐HPPVTA) and P(1‐M‐2‐HEPVTA) display a columnar nematic phase, indicating that the steric hindrance effect do not affect liquid crystalline behavior of the polymers. The dynamic light scattering results demonstrated that P(1‐M‐2‐HEPVTA) exhibited lower cloud point compared with that of P(2‐HPPVTA) at the same mass concentration and the same molecular weight. The more significant molecular weight and concentration dependence on cloud point have been observed in P(2‐HPPVTA) solution than in P(1‐M‐2‐HEPVTA) solution. We also discovered that the cloud points of both P(2‐HPPVTA) and P(1‐M‐2‐HEPVTA) solution are lower in D2O than in H2O. It is noted that the cloud point of PM‐2 is 9.9 °C lower in D2O than in H2O, much less pronounced than the cloud point difference of PH‐2. The differences of thermo‐responsive behaviors between P(2‐HPPVTA) and P(1‐M‐2‐HEPVTA) were resulted from the steric hindrance effect existed in their side groups. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3429–3438 相似文献
12.
Sheng‐Han Wu Chi‐Hsien Shen Jar‐Hung Chen Chia‐Chen Hsu Raymond Chien‐Chao Tsiang 《Journal of polymer science. Part A, Polymer chemistry》2004,42(16):3954-3966
A series of thiophene‐containing photoactive copolymers consisting of alternating conjugated and nonconjugated segments were synthesized. The 1H NMR spectra corroborated the well‐defined structures, and the copolymers not only were soluble in common organic solvents but also had high glass‐transition temperatures (ca. 130 °C) and good thermal stability up to 390 °C. Introducing aliphatic functional groups, such as alkyl or alkoxyl, into chromophores of the copolymers redshifted the photoluminescence spectra and lowered the optical bandgaps. The electrochemical bandgaps calculated from cyclic voltammetry agreed with the optical bandgaps and thus indicated that electroluminescence and photoluminescence originated from the same excited state. The energy levels (highest occupied molecular orbital and lowest unoccupied molecular orbital) of all the copolymers were lower than those of poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1.4‐phenylenevinylene] MEH–PPV, indicating balanced hole and electron injection, which led to improved performance in both single‐layer and double‐layer polymeric‐light‐emitting‐diode devices fabricated with these copolymers. All the copolymers emitted bluish‐green or green light above the threshold bias of 5.0 V under ambient conditions. At the maximum bias of 10 V, the electroluminescence of a device made of poly(2‐{4‐[2‐(3‐ethoxy phenyl)ethylene]phenyl}‐5‐{4‐[2‐(3‐ethoxy,4‐1,8‐octanedioxy phenyl)ethylene]phenyl}thiophene) was 5836 cd/m2. The external electroluminescence efficiency decreased with the lifetime as the polymer degraded. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3954–3966, 2004 相似文献
13.
Satoshi Okabe Kenji Hanabusa Mitsuhiro Shibayama 《Journal of Polymer Science.Polymer Physics》2005,43(24):3567-3574
The small‐angle neutron scattering (SANS) and dynamic light scattering (DLS) investigation were carried out for organogels in toluene, formed by organogelators, to elucidate the relationship between the chemical structure and the gelation mechanism as well as the physical properties of the gels. Three different organogelators, that is cyclo(L ‐β‐3,7‐dimethyloctylasparaginyl‐L ‐phenylalanyl) (CPA), trans‐(1R,2R)‐bis(undecylcarbonylamino)cyclohexane (TCH), and Nε‐lauroyl‐Nα‐stearylaminocarbonyl‐L ‐lysine ethyl ester (LEE), were chosen for comparison. The SANS intensity functions of toluene solutions of these gelators could be reduced with the concentration and were described with a scattering function for thin rods. This indicates that the gels consist of noncorrelated, rod‐like elements aggregated to each other. The characteristic features of the gelation properties, such as the critical gelation concentration, Cgel, the gelation temperature, Tgel, the gel structure, and the gelation mechanism, were different from each other. CPA had the lowest Cgel and became a gel gradually as the temperature decreased, while TCH and LEE had higher Cgels and underwent a sharp sol–gel transition. We conclude that the gelation mechanisms between the CPA and TCH solutions are different. The “CPA type” gelators form a gel by a linear extension of hydrogen‐bonded plane, while the “TCH type” gelators form a twisted wire, because of its strong helicity and crystallizability. In addition, in the latter type, a next generation of fibrils easily stacks on top of the previous ones to form larger fibrils. These models well explain the DLS results and the mechanical properties. That is, the fibrillar stems in CPA gels are rather mobile and fragile, while those in TCH and LEE are frozen and brittle. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3567–3574, 2005 相似文献
14.
Mengmeng Xie Lin Yu Zhao Li Zhen Zheng Xinling Wang 《Journal of polymer science. Part A, Polymer chemistry》2016,54(22):3583-3592
Here, we design a novel triple‐stimuli‐sensitive graft copolymer assembly which responds to the changes in temperature, reducing agent, and light. The graft copolymer consists of thermo‐responsive tetraethylene glycolyl poly(trimethylene carbonate) (P(MTC‐4EG)) as backbone and light‐sensitive poly(2‐nitrobenzyl methacrylate) (PNBM) as side chain linked by an intervening disulfide bond. In aqueous solution, the polymer can self‐assemble into micelle with thermo‐sensitive shell (P(MTC‐4EG)), light‐sensitive core (PNBM), and disulfide linker. The assemblies in response to stimuli were revealed by dynamic light scatting (DLS) and transmission electron microscopy (TEM). The drug release behaviors of Nile Red (NR)‐loaded carriers were also valued with stimuli from temperature, reducing agent, and light. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3583–3592 相似文献
15.
Mikls Zrínyi Andrs Szilgyi Genovva Filipcsei Jzsef Fehr Jzsef Szalma Gbor Mczr 《先进技术聚合物》2001,12(9):501-505
Polymer gels are unique smart materials in the sense that they can respond to many different stimuli. In this paper we report how poly(N‐isopropylacrylamide) (abbreviated as PNIPA) and other polymer hydrogels can be used to construct an intelligent gel‐glass which can moderate the amount of light and radiated heat. This environmental sensitive glass, which is a smart hydrogel layer placed between two glass or plastic sheets, becomes opaque when the temperature exceeds a critical value. It becomes transparent again if it is cooled down. The adaptive properties of gel‐glasses make them a promising materials to protect from strong sunlight and heat radiation. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
16.
Hydrogen‐rich materials are potential high‐temperature superconductors at pressures lower than metal hydrogen, mainly because hydrogen atoms can provide strong electron–phonon coupling and high phonon frequencies in hydrogen‐rich materials. This review provides a systematic overview of the crystal type, stability, pressure‐induced transition, metallization and superconductivity of binary light‐metal hydrides under high pressure. 相似文献
17.
Sung‐Chul Kim Seung‐Min Park Jin Soo Park Seung‐Joon Lee Sung‐Ho Jin Yeong‐Soon Gal Jae Wook Lee 《Journal of polymer science. Part A, Polymer chemistry》2008,46(3):1098-1110
Two PPV‐based bipolar polymers containing 1,3,4‐oxadiazole pendant groups were synthesized via the Gilch polymerization reaction for use in light‐emitting diodes (LEDs). The resulting polymers were characterized using 1H and 13C NMR, elemental analysis, DSC, and TGA. These polymers were found to be soluble in common organic solvents and are easily spin‐coated onto glass substrates, producing high optical quality thin films without defects. The electro‐optical properties of ITO/PEDOT/polymer/Al devices based on these polymers were investigated using UV‐visible, PL, and EL spectroscopy. The turn‐on voltages of the OC1Oxa‐PPV and OC10Oxa‐PPV devices were found to be 8.0 V. The maximum brightness and luminescence efficiency of the OC1Oxa‐PPV device were found to be 544 cd/m2 at 19 V and 0.15 cd/A, respectively. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1098–1110, 2008 相似文献
18.
Junki Yano Kazuhiko Ishihara Shin‐ichi Yusa 《Journal of polymer science. Part A, Polymer chemistry》2017,55(15):2432-2439
A diblock copolymer (P98N100) composed of a biocompatible water‐soluble block (PMPC) and a lower critical solution temperature (LCST) type thermo‐responsive block (PNIPAM) was prepared via controlled radical polymerization. To dissolve fullerene (C60) in water, the C60/P98N100 complex was prepared by mixing C60 and P98N100 powders. The maximum solubilized C60 concentration in water was 1.39 g/L, as estimated from UV–vis adsorption, when the polymer concentration was 5.0 g/L. The percent transmittance of the aqueous solution of the C60/P98N100 complex decreased above 36 °C due to inter‐complex association above the LCST for the PNIPAM block. While the hydrodynamic radius of C60/P98N100 complex was 135 nm at 20 °C, it increased to 161 nm at 50 °C. Despite the observation of 1H NMR signals from PMPC and PNIPAM blocks for the C60/P98N100 complex in D2O at room temperature, the signals from PNIPAM disappeared above 35 °C due to restricted motion of PNIPAM. Generation of singlet oxygen (1O2) from the C60/P98N100 complex by photo‐irradiation was confirmed using 9,10‐anthracene dipropionic acid (ADPA). The absorbance of ADPA decreased with increasing irradiation time due to oxidation of ADPA by 1O2. It is expected that the C60/P98N100 complex can be applied as a thermo‐responsive carrier for photodynamic therapy. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2432–2439 相似文献
19.
Hyung‐Seok Lim Eunji Kwon Moonjoo Lee Young Moo Lee Kyung‐Do Suh 《Macromolecular rapid communications》2013,34(15):1243-1248
Monodisperse poly(methacrylic acid/ethyleneglycoldimethacrylate) (MAA/EGDMA) hollow microcapsules, which exhibit pH‐responsive behavior, are prepared by diffusion of cationic surfactants and hydrophobic interaction. During the association of the negatively charged hydrogel microspheres and an oppositely charged surfactant (cetyltrimethylammonium bromide, CTA(+)B), the hydrophobic polymer‐surfactant complexes that form are separated from the internal water; consequently, a hollow structure can be formed. Confocal laser scanning microscopy, UV spectroscopy and zeta potential are employed to study the formation of the hollow structure during the diffusion of the cationic surfactant. The controlled release behavior of methylene blue as a model drug from the as‐prepared poly(MAA/EGDMA) microcapsules with a hollow structure is investigated under different pH conditions. The hollow structure can be retained, even during repetitive pH changes.
20.
Sheng‐Han Wu Jar‐Hung Chen Chi‐Hsien Shen Chia‐Chen Hsu Raymond Chien‐Chao Tsiang 《Journal of polymer science. Part A, Polymer chemistry》2004,42(23):6061-6070
To study the effect of nonconjugation on polymeric and photophysical properties of thiophene‐containing polymers, new light‐emitting copolymers comprising either alternate 2,5‐diphenylthiophene and vinylene or alternate 2,5‐diphenylthiophene and aliphatic ether segments were synthesized. Both copolymers contained 2,5‐diphenylthiophene as the major chromophore and emitted a sky bluish fluorescence in dilute solution (10?2 mg/mL). With a rigid and planarity structure and the concomitant crystallinity, the former copolymer (fully conjugated) possessed a higher quantum efficiency, a higher glass‐transition temperature, and a better thermal stability. In contrast, the latter copolymer (conjugated–nonconjugated) had better solubility and provided enhanced photophysical properties for the fabricated polymeric light‐emitting diode (PLED) device: at 15 V, the maximum current and brightness were 110 mA/cm2 and 4289 cd/m2, respectively, and the electroluminescence efficiency remained constant at approximately 4.9 cd/A in a voltage range of 8 to 14 V. The existence of intramolecular/intermolecular aggregates in the latter copolymer was corroborated from the the UV–vis and photoluminescence spectra of its solutions. With an increase in solution concentration, the shape and λmax of the photoluminescence spectrum were redshifted. In a solution with a concentration as high as 10 mg/mL, the redshift was so drastic that the photoluminescence spectrum was nearly identical to that of a solid‐film. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6061–6070, 2004 相似文献