首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Monomers bearing an activated ester group can be polymerized under various controlled polymerization techniques, such as ATRP, NMP, RAFT polymerization, or ROMP. Combining the functionalization of polymers via polymeric activated esters with these controlled polymerization techniques generate possibilities to realize highly functionalized polymer architectures. Within this highlight two different research areas of activated esters in polymer science will be discussed: (i) the preparation of defined reactive polymer architectures by controlled polymerization techniques and (ii) the preparation of defined reactive thin films. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6677–6687, 2008  相似文献   

2.
A facile method to generate polymer materials with embedded functional groups at known and precise positions along the polymer backbone is described. In the presented approach, well‐defined bifunctional poly(isobornyl acrylate)s preformed via atom transfer radical polymerization (ATRP) containing α,ω‐bromo end groups are reactivated and subsequently coupled in a stepwise manner via the nitrone‐mediated radical coupling (NMRC) technique. The generated polymers contain on average four nitrone moieties at evenly spaced locations. The number of embedded functionalities, and thus, the size of the polymer is limited by disproportionation reactions occurring during the nitroxide termination sequence. Using the nitrone as a functional carrier, secondary functionalities can be incorporated into the polymer with ease. To exemplify such an approach, an alkyne‐functionalized nitrone is used to construct a multisegment structure via NMRC reactions followed by postmodification of the obtained polymers with 3‐mercaptopropionic acid via UV‐induced thiol‐yne reactions. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
Bottlebrush polymers (BBPs) are three‐dimensional polymers with great academic and industrial potential owing to their highly tunable and intricate architecture. The most popular method to synthesize BBPs is ring‐opening metathesis polymerization (ROMP) with Grubbs' catalyst, allowing living grafting‐through polymerization of macromonomers of up to ultrahigh molecular weights with narrow molecular weight distribution. In this case, it has been well recognized that the purity of macromonomers (MMs) is critical for a successful ROMP reaction. For MMs synthesized from reversible‐deactivation radical polymerization, Grubbs and Xia demonstrated that the better control of ROMP reaction can be achieved when they are prepared via “growth‐then‐coupling” method that is coupling a norbornenyl group to end‐functionalized prepolymers. However, these MMs can also contain various residual impurities from previous synthetic steps, which can potentially poison the catalyst and hamper the ROMP reaction. Herein, we intentionally doped possible impurities into purified MMs to identify the most poisoning species. As a result, it was found that alkyne‐functionalized norbornene most significantly retarded the ROMP reaction due to a formation of Ru‐vinyl‐carbene intermediates having low catalytic reactivity, whereas the other reagents such as solvent, Cu‐catalyst, ligands, and azido‐terminated prepolymers were relatively inert. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 726–737  相似文献   

4.
Redox‐active polymers enhanced the focus of attention in the field of battery research in recent years. Anthraquinone is one of the most generic redox‐active functional compounds for battery applications, because the quinonide structure undergoes a redox reaction involving two electrons and features stable electrochemical behavior. Although various redox‐active polymers have been developed, the polymer backbone is mostly based on linear alkyl chains [e.g., poly(methacrylate)s, poly(ether)s]. Polymers featuring ring structures in the backbone are limited due to the restricted availability of suitable polymerization techniques [e.g., poly(norbornene)s by ROMP]. The cyclopolymerization of dienes with pendant redox‐active anthraquinone moieties by Pd catalysis represents a novel approach to synthesize redox‐active polymers featuring cyclic structures in the backbone. Electrochemical investigations, in particular cyclic voltammetry, of these new diene monomer, polymers and the corresponding polymer supported carbon paper composites were conducted in different organic electrolytes. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2184–2190  相似文献   

5.
Bottlebrush polymers are synthesized using a tandem ring‐opening polymerization (ROP) and ring‐opening metathesis polymerization (ROMP) strategy. For the first time, ROP and ROMP are conducted sequentially in the same pot to yield well‐defined bottlebrush polymers with molecular weights in excess of 106 Da. The first step of this process involves the synthesis of a polylactide macromonomer (MM) via ROP of d ,l ‐lactide initiated by an alcohol‐functionalized norbornene. ROMP grafting‐through is then carried out in the same pot to produce the bottlebrush polymer. The applicability of this methodology is evaluated for different MM molecular weights and bottlebrush backbone degrees of polymerization. Size‐exclusion chromatographic and 1H NMR spectroscopic analyses confirm excellent control over both polymerization steps. In addition, bottlebrush polymers are imaged using atomic force microscopy and stain‐free transmission electron microscopy on graphene oxide.

  相似文献   


6.
The preparation of new ring opening metathesis polymerization (ROMP) monomers using a 1,3‐dipolar cycloaddition between aryl azides and norbornadiene is described. Various norbornenetriazolines, obtained through a solvent‐and catalyst‐free reaction, can subsequently be incorporated into polymer backbones through ROMP reactions. Furthermore, thermal decomposition of the triazoline moiety can allow for further polymer functionalization. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2357–2362  相似文献   

7.
A series of graft (co)polymers were synthesized by nucleophilic substitution reaction between iodinated 1,2‐polybutadiene (PB‐I, backbone) and living polymer lithium (side chains). The coupling reaction between PB‐I and living polymers can finish within minutes at room temperature, and high conversion (up to 92%) could be obtained by effectively avoiding side reaction of dimerization when living polymers were capped with 1,1‐diphenylethylene. By virtue of living anionic polymerization, backbone length, side chain length, and side chain composition, as well as graft density, were well controlled. Tunable molecular weight of graft (co)polymers with narrow molecular weight distribution can be obtained by changing either the lengths of side chain and backbone, or the graft density. Graft copolymers could also be synthesized with side chains of multicomponent polymers, such as block polymer (polystyrene‐b‐polybutadiene) and even mixed polymers (polystyrene and polybutadiene) as hetero chains. Thus, based on living anionic polymerization, this work provides a facile way for modular synthesis of graft (co)polymers via nucleophilic substitution reaction between living polymers and polyhalohydrocarbon (PB‐I). © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

8.
Redox‐active 6‐oxoverdazyl polymers were synthesized via ring‐opening metathesis polymerization (ROMP) and their solution, bulk, and thin‐film properties investigated. Detailed studies of the ROMP method employed confirmed that stable radical polymers with controlled molecular weights and narrow molecular weight distributions (Ð < 1.2) were produced. Thermal gravimetric analysis of a representative example of the title polymers demonstrated stability up to 190 °C, while differential scanning calorimetry studies revealed a glass transition temperature of 152 °C. Comparison of the spectra of 6‐oxoverdazyl monomer 12 and polymer 13 , including FT‐IR, UV‐vis absorption, and electron paramagnetic resonance spectroscopy, was used to confirm the tolerance of the ROMP mechanism for the 6‐oxoverdazyl radical both qualitatively and quantitatively. Cyclic voltammetry studies demonstrated the ambipolar redox properties of polymer 13 (E1/2,ox = 0.25 and E1/2,red = ?1.35 V relative to ferrocene/ferrocenium), which were consistent with those of monomer 12 . The charge transport properties of thin films of polymer 13 were studied before and after a potential of 5 V was applied, revealing a drastic drop in the resistivity from 106?1010 Ω m or more to 1.7 × 104 Ω m and suggesting the potential usefulness of polymer 13 in bistable electronics. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1803–1813  相似文献   

9.
This article describes the construction of branched ROMP‐polymer architectures via polycondensation of ABn‐type macromonomers. For this convergent strategy, a polymer was synthesized that carries several hydroxyl‐groups along the polymer chain and one carboxylic acid group at the chain end. An esterification reaction between these functional groups yielded long‐chain branched polymers. The polymers were analyzed by NMR and SEC to monitor the condensation reaction. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

10.
Stimuli‐responsive hyperbranched polymers have attracted great attention in recent years because of their wide applications in biomedicine. Through proton‐transfer polymerization of triethanolamine and 1,2,7,8‐diepoxyoctane with the help of potassium hydride, a series of novel backbone thermo and pH dual‐responsive hyperbranched poly(amine‐ether)s were prepared successfully in one‐pot. The degrees of branching of the resulting polymers were at 0.40–0.49. Turbidity measurements revealed that hyperbranched poly(amine‐ether)s exhibited thermo and pH dual‐responsive properties in water. Importantly, these responsivities could be readily adjusted by changing the polymer composition as well as the polymer concentration in aqueous solution. Moreover, in vitro evaluation demonstrated that hyperbranched poly(amine‐ether)s showed low cytotoxicity and efficient cell internalization against NIH 3T3 cell lines. These results suggest that these backbone thermo and pH dual‐responsive hyperbranched poly(amine‐ether)s are promising materials for biomedicine. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
Amphiphilic block copolymers can be conveniently prepared via convergent syntheses, allowing each individual polymer block to be prepared via the polymerization technique that gives the best architectural control. The convergent “click‐chemistry” route presented here, gives access to amphiphilic diblock copolymers prepared from a ring opening metathesis polymer and polyethylene glycol. Because of the high functional group tolerance of ruthenium carbene initiators, highly functional ring opening metathesis polymerization (ROMP) polymer blocks can be prepared. The described synthetic route allows the conjugation of these polymer blocks with other end‐functional polymers to give well‐defined and highly functional amphiphilic diblock copolymers. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2913–2921, 2008  相似文献   

12.
The self‐assembly into supramolecular polymers is a process driven by reversible non‐covalent interactions between monomers, and gives access to materials applications incorporating mechanical, biological, optical or electronic functionalities. Compared to the achievements in precision polymer synthesis via living and controlled covalent polymerization processes, supramolecular chemists have only just learned how to developed strategies that allow similar control over polymer length, (co)monomer sequence and morphology (random, alternating or blocked ordering). This highlight article discusses the unique opportunities that arise when coassembling multicomponent supramolecular polymers, and focusses on four strategies in order to control the polymer architecture, size, stability and its stimuli‐responsive properties: (1) end‐capping of supramolecular polymers, (2) biomimetic templated polymerization, (3) controlled selectivity and reactivity in supramolecular copolymerization, and (4) living supramolecular polymerization. In contrast to the traditional focus on equilibrium systems, our emphasis is also on the manipulation of self‐assembly kinetics of synthetic supramolecular systems. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 34–78  相似文献   

13.
An alkylated semiconducting polymer comprising alternating bithiophene‐[all]‐S,S‐dioxide and aromatic monothiophene units in the polymer backbone was synthesized with the intent of modifying the energy gap and lowest unoccupied molecular orbital for use as a stable n‐type semiconductor. Films spun from this semiconducting polymer were characterized utilizing X‐ray scattering, near edge X‐ray absorption fine structure spectroscopy, ultraviolet photoelectron spectroscopy, and thin‐film field effect transistors to determine how oxidation of the thiophene ring systems impacts the structural and electronic properties of the polymer. The thiophene‐S,S‐dioxide polymers have lower optical and electrical band gaps than corresponding thiophene polymers. X‐ray scattering results indicate that the polymers are well ordered with the π–π stacking distances increased by 0.4 Å relative to analogous thiophene polymers. The electrical stability of these polymers is poor in transistors with a drop in the field effect mobility by approximately one order of magnitude upon addition of just 5% of the thiophene‐S,S‐dioxide unit in a copolymer with thiophene. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

14.
Using living cationic polymerization, a series of polyphosphazenes is prepared with precisely controlled molecular weights and narrow polydispersities. As well as varying chain length through the use of a living polymerization, amine‐capped polyalkylene oxide (Jeffamine) side chains with varied lengths are grafted to the polymer backbone to give a series of polymers with varied dimensions. Dynamic light scattering and size exclusion chromatography are used to confirm the preparation of polymers with a variety of controlled dimensions and thus hydrodynamic volumes. Furthermore, it is demonstrated how the number of arms per repeat unit, and thus the density of branching, can also be further increased from two to four through using a one‐pot thiolactone conversion of the Jeffamines, followed by thiol‐yne addition to the polyphosphazene backbone. These densely branched, molecular brush‐type polymers on a biodegradable polyphosphazene backbone all show excellent aqueous solubility and have potential in drug‐delivery applications. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4467–4473  相似文献   

15.
The copolymerization of N‐phenyl maleimide and p‐chloromethyl styrene via reversible addition–fragmentation chain transfer (RAFT) process with AIBN as initiator and 2‐(ethoxycarbonyl)prop‐2‐yl dithiobenzoate as RAFT agent produced copolymers with alternating structure, controlled molecular weights, and narrow molecular weight distributions. Using poly(N‐phenyl maleimide‐altp‐chloromethyl styrene) as the macroinitiator for atom transfer radical polymerization of styrene in the presence of CuCl/2,2′‐bipyridine, well‐defined comb‐like polymers with one graft chain for every two monomer units of backbone polymer were obtained. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2069–2075, 2006  相似文献   

16.
Direct arylation polymerization between derivatives of dibromodiketopyrrolopyrrole (DPP) and thienoisoindigo (TIIG) resulted in two π‐conjugated copolymers with average molecular weights up to 24.0 kDa and bandgaps as low as 0.8 eV. The structural analysis of the obtained two polymers revealed well‐defined alternating conjugation backbones without obvious structural defects. The introduction of hexyl‐group in the β‐position of thiophene rings in the DPP units not only reduces the bandgap of conjugated polymer compared to a similar polymer containing bare‐thiophene flanked DPP but also affects polymer morphology in thin films. P‐type charge‐transport characteristics were observed for two polymers in organic field‐effect transistors with comparable hole mobilities. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3205–3213  相似文献   

17.
Four kinds of functional polyethylene carrying thioester pendants were synthesized via ring‐opening metathesis polymerization (ROMP) of alkyl cyclopent‐3‐enecarbothioate catalyzed by a ruthenium‐based commercial catalyst and subsequent hydrogenation of the ROMP products (alkyl = ethyl, n‐butyl, n‐octyl, or n‐dodecyl). In these polymers the pendant alkyl thioester groups are precisely distributed along the backbone on every five methylene carbons. Chain structure, molecular weight and molecular weight distribution of the polymers were characterized by 1H and 13C NMR, and GPC. The ROMP reactions all reached high monomer conversions, and hydrogenation of the ROMP products were exhaustive. Thermal transitions and side chain crystallization behaviors of the polymer were investigated and characterized by DSC and TGA. Glass transition temperature and melting temperature of these polymers were higher than the counterparts containing ester pendants. TGA analysis indicated that all the thioester‐containing polymers exhibited moderate thermal stability, and the sulfur‐containing polymers show slightly lower thermal stability than their counterparts without sulfur. The new family of functionalized polyethylenes could be used as models of ethylene‐thioacrylate copolymers, and find applications as novel functional materials. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 4027–4036  相似文献   

18.
Composite latex particles based on homopolymers and graft‐copolymers composed of polynorbornene (PNB) and poly(tert‐butyl acrylate) (PtBA) were synthesized in microemulsion conditions by simultaneous combination of two distinct methods of polymerization: Ring‐opening metathesis polymerization (ROMP) and atom transfer radical polymerization (ATRP). Only one commercial compound (first generation Grubbs catalyst) was used to initiate the ROMP of norbornene (NB) and activate the ATRP of tert‐butyl acrylate (tBA). Well‐defined nanoparticles with hydrodynamic diameters smaller than 50 nm were prepared with original morphologies depending on the monomer compositions, the type of combination (polymer blend or graft‐copolymer), and the conditions of microemulsion polymerizations. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
The development of synthetic routes which lead to five new diisocyanide monomers with one or two phenolic groups is described. Their polymerization behavior is studied with Pd‐ and Ni‐based initiators, as well as under microwave irradiation. The polymerizability is mainly dominated by steric effects as is concluded from experiments using different protecting groups. Chiroptical properties of these new polymers are studied by CD‐spectroscopy. After deprotection, helically chiral poly(quinoxalin‐2,3‐diyl)s are obtained which display a Brønsted function attached to a stereolabile biaryl axis whose configuration should be influenced by the chiral polymer backbone. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1320–1329  相似文献   

20.
Boronic acid end‐functionalized polycaprolactone (PCL) polymers were synthesized by ring‐opening polymerization using a pinacol boronate ester‐containing (Bpin) initiator. The polymerization provides access to boron‐terminated polymers (i.e. Bpin‐PCL‐OH) with narrow molecular weight distributions (PDI = 1.09). Postsynthetic manipulation of the polymer's terminal hydroxyl group by copper‐catalyzed azide‐alkyne cycloaddition chemistry provides a series of bis end‐functionalized polymers with significant structural diversity at the termini. Deprotection of the boronate ester end group was accomplished with an acidic solid phase DOWEX resin. The boronate ester deprotection methodology does not result in hydrolysis of the polymeric backbone. The boronic acid‐tipped polymers were converted into star polymer assemblies using thermal dehydration and ligand‐facilitated trimerization. Thermal dehydration of (HO)2B‐PCL‐OAc to the corresponding boroxine‐based star polymer assembly was inefficient and lead to degradation products. Ligand‐facilitated trimerization using either pyridine or 7‐azaindole as the Lewis base was efficient and mild. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号