首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electronic structure of Ru2(μ-O2CR)4, Ru2(μ-O2CR)4(L)2 and Ru2(μ-O2CR)4(NO)2 (R = H, CH3, CF3; L = H2O, THF) ruthenium tetracarboxylates is analyzed on the basis of calculations by the density functional method with full geometry optimization. It is concluded that the axial coordination of nitric oxide (II) to Ru2(μ-O2CR)4 is accompanied by destruction of the metal-metal π-bond with d πAO Ru reorientation on bonding with NO molecules.  相似文献   

2.
采用密度泛函B3LYP/6-311G**和高级电子相关耦合簇CCSD(T)/6-311G**方法计算研究了CH3与NO反应机理, 全参数优化了反应势能面上各驻点的几何构型, 用内禀反应坐标(IRC)计算和频率分析方法, 对过渡态进行了验证. 研究结果表明: CH3与NO是一多通道多步骤的复杂反应, 可以分别在单重态和三重态势能面上进行. 经过缔合, 氢转移和离解等复杂过程, 最终得到8种产物(P1P8).  相似文献   

3.
基于密度泛函理论、结合电子结构分析和Mayer键级变化研究了钙对焦炭非均相还原NO的微观作用机理。对焦炭模型进行电子定域化函数和静电势极值点分析发现,焦炭边缘未饱和的碳原子周边表现出高的电子定域性,体系静电势最小值为-101.1 k J/mol,边缘碳活性位存在孤对电子。钙的添加可促进第一个NO分子在焦炭边缘的吸附,但对第二个NO分子的吸附影响不大。钙的添加不改变NO在焦炭边缘的非均相还原反应路径,但可将决速步的活化能由124.4 k J/mol降至91.9 k J/mol。动力学分析发现添加钙后,非均相还原反应的指前因子增大,焦炭边缘的活化位点增多,有利于加快NO非均相还原反应的进行。  相似文献   

4.
污泥热解中HCN与CaO的反应机理:密度泛函理论研究   总被引:2,自引:0,他引:2  
采用密度泛函理论对污泥热解中CaO与HCN在低温段的反应进行了研究。在B3LYP/6-311++(3df,2p)水平上计算得到了反应路径上各驻点的几何构型与频率,并在此构型上使用CCSD(T)/cc-pVQZ进行单点能计算。结果表明,两个HCN分子吸附于CaO后,质子发生转移时出现反应路径中最大能垒(310.33 kJ/mol)。使用经典过渡态理论拟合了反应中各步骤的阿累尼乌斯公式,计算了三种典型温度下各步骤的反应速率,发现质子转移为该反应的决速步骤,且温度越高CaO对HCN的作用效果越好。  相似文献   

5.
We present a computational investigation into the nature of bonds formed by rare earth elements (REE) in materials. This study focuses on the incorporation of neodymium in minerals called apatites, which are derived from fluorapatite: Ca10(PO4)6F2. These minerals, which allow many substitutions on all three Ca, P, and F sites, are considered as potential host phases for radioactive elements separated from nuclear waste. Nd and trivalent actinides have very similar physical and chemical properties, and Nd is not radioactive and much more easily handled. It is therefore very often used as a surrogate for actinides with oxidation degree three in experimental studies. Several formulas can be considered to substitute Nd3+ to Ca2+ and maintain charge balance of the apatite. Existing experimental and theoretical studies, however, mostly concern the Ca9Nd(PO4)5SiO4F2 formula, where the Nd incorporation is compensated by the replacement of one PO by a SiO group. Moreover, only the cation position has been studied, whereas the silicate position and its influence on stability are unknown. We present a more general investigation of possible charge compensations on the one hand, and of the various resulting configurations on the other. All possible configurations of the two formulas Ca9Nd(PO4)5 SiO4F2 and Ca8NdNa(PO4)6F2 have been considered. Calculations have been performed within the framework of density functional theory (DFT). A computation scheme that permits good accuracy in these systems within reasonable computation times is determined. The results obtained for cohesion energies, geometries, and electronic densities are discussed. As for the formulation, it is shown that the Ca8NdNa(PO4)6F2 formula is less stable than the fluorapatite, while Ca9Nd(PO4)5 SiO4F2 is more stable. For the structures, it is found that Nd substitutes preferably in the second cationic site. Moreover, the most stable structures exhibit the shortest Na–Nd or Nd–Si distances. Local charge balance therefore seems favorable. Then, it is shown that Nd forms covalent bonds both in apatite and in britholite, while Na forms ionic bonds. Finally, a first correlation between the material stability and the covalent character of the bonds formed is established. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

6.
The nitric acid oxidation of multiwalled carbon nanotubes leading to surface carboxylic groups has been investigated both experimentally and theoretically. The experimental results show that such a reaction involves the initial rapid formation of carbonyl groups, which are then transformed into phenol or carboxylic groups. At room temperature, this reaction takes place on the most reactive carbon atoms. At higher temperatures a different mechanism would operate, as evidenced by the difference in activation energies. Experimental data can be partially related to first-principles calculations, showing a multistep functionalization mechanism. The theoretical aspects of the present article have led us to propose the most efficient pathway leading to carboxylic acid functional groups on the surface. Starting from mono-vacancies, it ends up with the synergistic formation of dangling -COOH groups and the enlargement of the vacancies.  相似文献   

7.
基于密度泛函理论,采用广义梯度近似(GGA)分析了H2分子吸附在氧化硅团簇上的几何结构、电子性质以及吸附能.结果发现:H2分子与Si3O4团簇相互作用时,H2分子被分解,游离的H原子优先吸附在末端Si原子上,表明Si3O4团簇体系对氢气的存储主要依赖于末端存在悬挂键的Si原子,接着H2分子才以分子的形式以较小吸附能吸附在Si3O4H4团簇上.氢气分子主要引起与其邻近的原子电荷的重新分布.该团簇体系的红外、拉曼光谱图有效地鉴定了H2分子的吸附状态,为理论上确定团簇的稳定结构和实验上对观测结果的分析提供有力的途径.  相似文献   

8.
Neurotoxic and carcinogenic acrylamide (ACR) is present in many food products. This finding spurred numerous studies for ACR scavengers. Niacin is putatively one of them because it reacts via Michael addition with ACR to form 1‐propanamide‐3‐carboxy pyridinium. Here, we study the mechanism and energetics of this reaction in aqueous solution by density functional theory. The CAM‐B3LYP and M06‐2X functionals with the 6‐31+G(d,p) basis set and implicit solvent were used. Single point calculations at the MP2 level with the same basis set were performed on optimized structures obtained at the M06‐2X level. Solvent effects comprehended both polarizable continuum model and solvation model density solvation models. The calculated NMR chemical shifts of 1‐propanamide‐3‐carboxy pyridinium are in agreement with experimental results. The theoretical study favors thermodynamically the formation of the adduct while the calculated activation energies turn out not to be too dissimilar from the ones measured for the alkylation reaction between ACR and 4(p‐nitrobenzyl)pyridine. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
A synergetic effect is found in the sonochemical formation of HNO2 in HNO3 solution in the presence of an N2O–Ar gaseous mixture. The maximum rate of HNO2 formation is observed at an N2O : Ar ratio of 15 : 85 (v/v). During the sonolysis of 4 M HNO3 solutions, the rate of HNO2 formation increases multifold due to the synergetic effect. The rate of sonochemical hydrazine decomposition in nitrate solutions also increases considerably in the presence of N2O.  相似文献   

10.
采用密度泛函理论研究了Ca元素对焦炭表面NO吸附行为的影响。使用周期性石墨烯模型近似模拟实际焦炭表面的石墨化结构,并在石墨烯表面装饰Ca原子(按质量计Ca原子覆盖率为13.3%),考察了Ca元素对焦炭表面NO吸附的催化作用。计算结果表明,NO分子在纯净石墨烯表面的吸附属于物理吸附,结合能仅为-19.34 kJ/mol;石墨烯表面掺入Ca原子后,由于Ca原子4s轨道和3d轨道的电子转移到NO分子,结合能显著提高至-206.02 kJ/mol。  相似文献   

11.
Doping is an efficient approach to narrow the band gap of TiO2 and enhance its photocatalytic activity. Here, we perform generalized gradient approximation (GGA)+U calculations to narrow the band gap of TiO2 by codoping of X (F, N) with transition metals (TM = Fe, Co) to extend the absorption edge to longer visible‐light wavelengths. Our results show that all the codoped systems can narrow the band gap significantly, in particular, (F+Fe)‐codoped system could serve as remarkably better photocatalysts with both narrowing of the band gap and relatively smaller formation energies than those of (F+Co) and (N+TM)‐codoped systems. Our results provide useful guidance for codoped TiO2 efficient for photocatalytic activity. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
13.
6‐Aminophenanthridine (6AP) and its derivatives show important biological activities as antiprion compounds and inhibitors of the protein folding activity of the ribosome. Both of these activities depend on the RNA binding property of these compounds, which has been recently characterized by fluorescence spectroscopy. Hence, fundamental insights into the photophysical properties of 6AP compounds are highly important to understand their biological activities. In this work, we have calculated electronic structures and optical properties of 6AP and its three derivatives 6AP8CF3, 6AP8Cl, and 6APi by density functional theory (DFT) and time‐dependent density functional theory (TDDFT). Our calculated spectra show a good agreement with the experimental absorption and fluorescence spectra, and thus, provide deep insights into the optical properties of the compounds. Furthermore, comparing the results obtained with four different hybrid functionals, we demonstrate that the accuracy of the functionals varies in the order B3LYP > PBE0 > M062X > M06HF. © 2015 Wiley Periodicals, Inc.  相似文献   

14.
A new bisabolane-type sesquiterpenoid, turmerone Q (1), along with six known compounds (2–7), were isolated from the rhizomes of Curcuma longa L. The structural elucidation of the new compound was conducted using 1H NMR, 13C NMR, HSQC, HMBC and NOESY spectroscopic analyses. The absolute configuration of 1 was elucidated by comparison of the experimental and calculated ECD spectra. The anti-inflammatory effects of 1–7 were evaluated through lipopolysaccharide-induced nitric oxide (NO) production in RAW 264.7 macrophages assays, and compounds 6 and 7 showed potent inhibitory activity against NO production.  相似文献   

15.
Photochemical or thermal decomposition of azo‐compounds (such as 2,2‐azobisisobutyronitrile, 2,2‐azobis(2‐methylpropionamidine) dihydrochloride, dialkyl peroxides (such as tert‐butyl peroxide and diacyl peroxides (such as benzoyl peroxide) in anaerobic nitric oxide (NO)‐saturated dimethylsulfoxide (DMSO) or aqueous solutions yielded nitroxides. Well‐characterized electron paramagnetic resonance spectra of nitroxides revealed that NO was favorable for reacting with carbon‐centered and less stereo‐inhibited transient alkyl radicals, giving kinds of nitrosoalkane, typically nitrosomethane, which act sequentially as C‐nitroso compounds to trap transient radicals present in solution, yielding spin‐trapping adducts, i.e. nitroxides. Radicals, including sulfinyl radicals from UV‐irradiated DMSO, were trapped by the in situ formed CH3NO. O‐centered radicals could not add to the freshly formed C‐nitroso compounds. Possible mechanisms are suggested. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
Polyunsaturated fatty acids like linolenic acid or arachidonic acid upon enzymatic hydroxylation (lipoxygenases) can lead to corresponding hydroperoxides. Their dehydration gave rise to vinyl allene oxides, which cyclized into cyclopentenones, precursors of jasmonic acid or prostanoids.  相似文献   

17.
18.
19.
Natural 2H‐chromenes were isolated from the crude extract of Piper aduncum (Piperaceae) and analyzed by electrospray ionization tandem mass spectrometry (ESI‐MS/MS) applying collision‐induced dissociation. Density functional theory (DFT) calculations were used to explain the preferred protonation sites of the 2H‐chromenes based on thermochemical parameters, including atomic charges, proton affinity, and gas‐phase basicity. After identifying the nucleophilic sites, the pathways were proposed to justify the formation of the diagnostic ions under ESI‐MS/MS conditions. The calculated relative energy for each pathway was in good agreement with the energy‐resolved plot obtained from ESI‐MS/MS data. Moreover, the 2H‐chromene underwent proton attachment on the prenyl moiety via a six‐membered transition state. This behavior resulted in the formation of a diagnostic ion due to 2‐methylpropene loss. These studies provide novel insights into gas‐phase dissociation for natural benzopyran compounds, indicating how reactivity is correlated to the intrinsic acid‐base equilibrium and structural aspects, including the substitution pattern on the aromatic moiety. Therefore, these results can be applied in the identification of benzopyran derivatives in a variety of biological samples.  相似文献   

20.
The change in interfacial interaction behavior of epoxy resin nanocomposites with the incorporation of graphene oxide (GO) was explored experimentally and computationally. GO with different weight (wt) loading was incorporated in epoxy resin by a three-way dispersion method. GO formed mechanical interlocking with epoxy resin, thereby resulting in a remarkable enhancement in mechanical and thermo-mechanical properties of GO-epoxy nanocomposite. In 0.3 wt% GO-epoxy nanocomposites, improvement of 26.7% in flexural strength and 39.2% in flexural modulus was reported. Using dynamic mechanical analysis (DMA), thermomechanical analysis (TMA) and differential scanning calorimetry (DSC), glass transition temperature (Tg) of 182.7°C and maximum thermal stability was reported for 0.3% GO-epoxy nanocomposite. The effect of GO on cross-linking in GO-epoxy nanocomposite was analyzed by DSC and Raman spectroscopy. The X-ray photoelectron spectroscopy (XPS) study was utilized to determine the interfacial interaction, and further was verified by density functional theory (DFT). By experimental and computational study, H-bonding was observed to improve interfacial interaction in GO-epoxy nanocomposite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号