首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The dielectric relaxation properties are considered for polymer networks built from polar macromolecules with the dipole moment directed along the end-to-end chain vector. The viscoeleastic cubic model of a regular network is used. The fixed average volume of a polymer network is ensured by the effective internal pressure. The dynamic models of polymer networks with external and interchain friction are studied. Two cases are considered: (1) polar chains cross-linked in a network at their ends, and (2) a densely cross-linked network with many network junctions per polar chain. The expressions for the autocorrelation functions of the total dipole moment of a network, which determine the dielectric susceptibility, are calculated. The relaxation spectrum of the autocorrelation function consists of two regions: the high-frequency relaxation spectrum of a chain fragment between two neighbouring junctions (intrachain relaxation spectrum) and the lowfrequency interchain relaxation spectrum. The interchain relaxation spectrum is determined by cooperative motions of chains which form a network. The characteristic time of this spectrum for networks of type (1) is the relaxation time of a chain between junctions τmin. For networks of type (2) a second time scale τ1 exists, which corresponds to motions inside the volume occupied by a single long polar chain included in a network. It leads to different time behaviour of the autocorrelation functions for both network models. The existence of only interchain friction in the network model leads to a cut-off of the relaxation spectrum at the time τmax depending on the volume of viscous interchain interactions.  相似文献   

2.
Rheological experiments were carried out on a 1 wt % hydrophobically modified alkali‐soluble emulsion (HASE) solutions at pH ∼ 9 in the presence of nonionic polyoxyethylene ether type surfactant (C12EO23). The low shear viscosity and dynamic moduli increases at c > cmc until they reach a maximum at a critical concentration, cm of approximately 1 mM (∼17 times the cmc of free surfactant) and then decrease. The dominant mechanism at cmc < c < cm is an increase in the number of intermolecular hydrophobic junctions and a strengthening of the overall associative network structure. Above cm, the disruption of the associative network causes a reduction in the number of junctions and strength of the overall network structure. The influence of C12EO23 on HASE before cmc could not be detected macroscopically by the rheological technique. However, isothermal titration calorimetry enables the determination of complex binding of surfactant to the polymer. Isothermal titration of C12EO23 into 0.1 wt % HASE indicates that the C12EO23 aggregation in water and 0.1 wt % HASE polymer solutions is entropically driven. A reduction in the critical aggregation concentration (cac) confirms the existence of polymer–surfactant interactions. The hydrophobic micellar junctions cause a decrease in the ΔH and ΔS of aggregation of the nonionic surfactant. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2019–2032, 2000  相似文献   

3.
The elastic properties of polymer networks formed via the radical polymerization of macromonomers with two polymerizable end groups are studied via computer simulation. It is shown that variation in the average functionality of network junctions, f avg, in a wide range (∼5–55) leads to a significant change in the shear modulus of the network. According to experiments with real networks (gels of poly(ethylene oxide) macromonomers), the shear modulus increases as f avg increases. This effect is not due only to a decrease in the fluctuations of positions of network junctions. The main cause of the increase in the modulus is that the modulus component due to interaction between polymer chains (entanglements) increases as the functionality of junctions in the investigated networks increases. The conclusion is made that these networks gain entanglements during the formation of network junctions with high functionality rather than inherit them from the solution of macromonomer chains.  相似文献   

4.
Artificial neural network models are used to investigate polymer chain dimensions. In our model, the input nodes are glass transition temperature (Tg), entanglement molecular weight (Me), and melt density (ρ). The number of nodes in the hidden layer is eight. We found that the relative error for prediction of the characteristic ratio ranges from 0.77 to 7.5% and that the overall average error is 3.57%. Artificial neural network models may provide a new method for studying statistics properties of polymer chains. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 3163–3167, 2000  相似文献   

5.
The influence of added surfactants on physical properties of associating polymer solutions was examined by a new statistical‐mechanical theory of associating polymer solutions with multiple junctions and by computer simulation. The sol–gel transition line, the spinodal line, and the number of elastically effective chains in the mixed networks were calculated as functions of the concentration of added surfactants. All of them exhibited nonmonotonic behavior as a result of the following two competing mechanisms. One was the formation of new mixed micelles by binding surfactants onto the polymer associative groups. These micelles serve as crosslink junctions and promote gelation. The other was the replacement of polymer associative groups in the already formed network junctions by added surfactants. Such replacement lowers connectivity of junctions and destroys networks. The critical micelle concentration was also calculated. The results are compared with the reported experimental data on poly(ethylene oxide)‐based associating polymers and hydrophobically modified cellulose derivatives. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 733–751, 2004  相似文献   

6.
Multisticker associative polyelectrolytes of acrylamide (≈86 mol %) and sodium 2‐acrylamido‐2‐methylpropanesulfonate (≈12 mol %), hydrophobically modified with N,N‐dihexylacrylamide groups (≈2 mol %), were prepared with a micellar radical polymerization technique. This process led to multiblock polymers in which the length of the hydrophobic blocks could be controlled through variations in the surfactant‐to‐hydrophobe molar ratio, that is, the number of hydrophobes per micelle (NH). The rheological behavior of aqueous solutions of polymers with the same molecular weight and the same composition but with two different hydrophobic block lengths (NH = 7 or 3 monomer units per block) was investigated as a function of the polymer concentration with steady‐flow, creep, and oscillatory experiments. The critical concentration at the onset of the viscosity enhancement decreased as the length of the hydrophobic segments in the polymers increased. Also, an increase in the NH value significantly enhanced the thickening ability of the polymers and affected the structure of the transient network. In the semidilute unentangled regime, the behavior of the polymer with long hydrophobic segments (NH = 7) was studied in detail. The results were well explained by the sticky Rouse theory of associative polymer dynamics. Finally, the viscosity decreased with an increase in the temperature, mainly because of a lowering of the sample relaxation time. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1640–1655, 2004  相似文献   

7.
The effect of the initial mole ratio of reactive components on the shape and position of dynamic mechanical functions in the main transition and rubbery region was investigated for two series of networks made from poly(oxypropylene)diamine (D-400)-diglycidyl ether of Bisphenol A (DGEBA) and poly(oxypropylene)-triamine (T-403)-DGEBA. The networks were prepared with an excess of amine groups up to the highest conversion of epoxy groups; the ratio rH = 2 [ NH2 ]0/ [E]0 ranged from unity to 2,1 for networks from D-400 and from unity to 3,5 for networks from T-403. By using the theory of branching processes, structural parameters of these networks were calculated, in particular, the molecular weights of elastically active network chains (EANC's) including dangling chains, of backbone EANC's and of dangling chains. A comparison between theory and experiment led to the following conclusions: (a) the mechanical behaviour in the rubberlike region can be described either by using an affine deformation model (front factor A = 1), or by means of a phantom model (A = (fe-2)/fe, fe being functionality of the crosslink) with the contribution of permanent interchain interactions; (b) the temperature and frequency position of viscoelastic functions in the main transition region is conclusively affected by the concentration of EANC's; (c) the shape of visco-elastic functions, especially of retardation spectra in the main transition and rubbery region, depends on the detailed structure of EANC's, but it cannot be decided from the result which structural parameter has the strongest effect on the shape of the functions.  相似文献   

8.
Using thermoelastic measurements, specific polymer-diluent interactions have been demonstrated for atactic poly(vinyl alcohol) networks swollen in water. This was done by following a thermodynamic parameter as a function of network swelling, which was controlled by varying the extent of network crosslinking. At low crosslinking (high swelling) the ratio of the energy component fe of the force to the total force f was found to be perhaps a little less than ?0.38 for poly(vinyl alcohol) swollen in water to less than 0.36 volume fraction of polymer. The method of evaluation is new and should be applicable to other polymer single component diluent systems.  相似文献   

9.
A novel polymer, poly( 1 ) containing benzoxazine and phenyleneethynylene moieties in the main chain with number‐average molecular weights ranging from 1400 to 9800 was obtained quantitatively by the Sonogashira–Hagihara coupling polymerization of the corresponding iodophenyl‐ and ethynylphenyl‐substituted monomer 1 . Poly( 1 ) was heated at 200 °C under N2 for 2 h to obtain the cured polymer, poly( 1 )′ via the ring‐opening polymerization of the benzoxazine moieties. The structures of the polymer before and after curing were confirmed by 1H‐NMR, IR, and UV–vis absorption and reflectance spectroscopies. Poly( 1 )′ was thermally more stable than monomer 1 and poly( 1 ). A specimen was prepared from a mixture of poly( 1 ) and phenol‐diaminodiphenylmethane type benzoxazine 2 by heating at 200 °C for 2 h under N2. The poly( 1 )/ 2 resin was thermally stable than bisphenol‐A type benzoxazine resin 3 . Poly( 1 ) exhibited XRD peaks corresponding to the d‐spacings of 1.26–0.98 and 0.40 nm, assignable to the repeating monomer unit and alignment of polymer molecules, respectively. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2581–2589  相似文献   

10.
N‐vinyl‐2‐pyrrolidone (VP) and 2‐hydroxyethyl methacrylate (HEMA) copolymeric gels have been synthesized using UV‐initiated photopolymerization to understand their characteristic behavior for development as a bioengineering material, specifically for tissue expansion. The properties of the gels have been investigated by systematic variation of the monomer feed composition and initiator and crosslinker concentrations as well as UV irradiation intensity, which was controlled by various photomasks. The swelling kinetics and network characteristics for the various hydrogels were investigated through the observation of gel swelling behavior in saline solutions and compression modulus determination of the fully swollen hydrogels. The equilibrium swelling ratio (qe) of the gels increased as expected with increasing VP content and decreasing crosslinker concentration. However, it was found that as the amount of initiator or UV intensity increased, unexpectedly qe also increased, which indicates a network structure with decreasing effective crosslink density (νe) (or increasing average molecular weight between crosslinks (Mc)). Based on this anomalous swelling behavior and thermal analysis of the gels, a molecular structure is proposed consisting of increasing number of dangling chain ends within the polymer network. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1450–1462, 2008  相似文献   

11.
Supramolecular polymer networks exhibit twofold dynamics: that of their polymer chains and that of the transient bonds between them, which is further complexed when irregular network structures lead to local variation of both. A typical irregularity is imperfect network‐chain connectivity. To assess the impact of that, we study the diffusion of three different types of tracer polymers in supramolecular model networks of four‐arm star‐shaped poly(ethylene glycol). First, we focus on tracers that carry three stickers and one fluorescent label at their four arms, thereby creating an inherent network connectivity defect in their vicinity. Second, we embed tracers that carry four stickers and four labels and that do not intrinsically create network defects. Third, we embed non‐sticky tracers with a larger size than the network meshes, thereby sterically obstructing their connectivity. These studies reveal that the first tracers can rapidly walk within the networks by sequential arm detachment above c*, whereas below c*, they are subject to a dynamic equilibrium of liberated and gel‐cluster‐bound portions. By contrast, the second tracers are efficiently incorporated into the network, which dramatically hinders their motion. Opposed to that, the third tracers can diffuse almost as unhindered as if they were embedded within an uncrosslinked matrix. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 19–29  相似文献   

12.
The energy component of the stress has been determined for poly(vinyl alcohol) networks in swelling equilibrium with a series of water–ethylene glycol compositions. The data are analyzed by using the equations describing the thermoelasticity of networks in swelling equilibrium. The ratio fe/f of the energy component to the total force, as calculated from these equations, varies systematically with diluent composition but is independent of elongation in a given diluent. For a network crosslinked by terephthalaldehyde, fe/f varied from ?0.33 to ?0.42 as the diluent composition was changed from pure water to 20% ethylene glycol. Similar effects were found in a network crosslinked by formaldehyde. It is not yet certain whether this effect represents a real solvent dependence of fe/f or a failure of the equation of state to account for the effect of composition changes on the force.  相似文献   

13.
In this article, we report the preparation and properties of the bulk supramolecular polymer gels prepared from a polybutadiene based on the amidinium‐carboxylate salt bridge, highlighting the difference from a well‐established network system based on carboxylic acid and amine. We have prepared the amidinium‐carboxylate salt bridge‐based supramolecular polymer gels from a carboxy‐terminated telechelic polybutadiene and a linear polyamidine having N,N′‐di‐substituted acetamidine group in the main chain. FTIR analysis along with Small angle X‐ray scattering measurements indicated that the salt bridge was attributed to the gelation through three‐dimensional network formation. Virtually no fluidity was observed for the supramolecular gel containing equimolar amounts of the carboxyl group and the amidine group, which showed a high G′ value of about 1 MPa at room temperature and a Tgel of 37 °C. For comparison, the supramolecular polymer gels crosslinked by ammonium‐carboxylate salt were prepared using a linear polyethyleneimine instead of the polyamidine. The gel with equimolar amounts of the carboxyl group and the secondary amino group showed liquid‐like fluidity with a G′ value of about 0.01 MPa at room temperature, which was attributed to the fact that a certain amount of the carboxyl group remained as its free form without salt formation, as evidenced by FTIR analysis. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1815–1824  相似文献   

14.
A series of poly(phenylene oxide) (PPO) polymers bearing phosphonic acid groups on the methyl group and on the phenyl ring are synthesized as membrane materials for fuel cell applications. These phosphonic acid‐based PPO membranes exhibited high chemical resistance, dimensional stability, and good proton conductivity even under low humidity condition. Among the membranes, the one in which the phosphonic acid moiety is attached to the polymer main chain with ? CO(CH2)5? shows highest proton conductivity under overall conditions even though it has the lowest water uptake and IEC value. A well‐defined separation of the hydrophilic and hydrophobic phases suggests the phosphonic acid groups to form proton conduction channels via interchain hydrogen bonding. A high storage modulus of the membranes in various temperature ranges indicates that the membranes are suitable for use under a high temperature and low humidity conditions. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019  相似文献   

15.
Number‐ and weight‐average molecular weight of condensation polymers formed by primary molecules carrying different species of functional groups {Ai} (i = 1, 2, …, s) are derived by cascade theory. These functional groups are allowed to form multiple junctions of variable multiplicity k. The gel point condition is found to be given by ∑ wi/|μw,i + 1/∑ fi ? 1 = 0, where fi is the number of Ai groups specified by the index i on a primary molecule, wifi/∑ fi the number fraction of the species i it carries, and |μw,i the weight average multiplicity of the junctions formed by the groups Ai. The explicit form of the molecular weight distribution function is found for the simplest case of two components. Possible application to thermoreversible gelation is suggested. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2405–2412, 2003  相似文献   

16.
A theoretical analysis of the thermoelastic behavior of polymeric networks in swelling equilibrium with excess diluent, using both the kinetic theory of elasticity and the Flory-Huggins theory of mixing, is presented. Our calculations are restricted to the special case of diluents composed of a single constituent. The results are used to obtain the ratio of the energy component of the force fe to the total force f of rubber networks swollen in excess n-decane, and we find fe/f to be 0.17, which compares favorably with the value 0.18 reported for the unswollen network. Furthermore, fe/f is independent of elongation, in accordance with theory. The kinetic theory of elasticity is reasonably well obeyed in this highly swollen system although there remains a small contribution to the force from the C2 term of the Mooney-Rivlin phenomenological elasticity equation. It is not believed that this has an appreciable effect on fe/f.  相似文献   

17.
We report a methodology for the synthesis of Nε-phenoxycarbonyl-protected poly(l -lysine) on the side chain by chain growth polycondensation of Nα,Nε-bis(phenoxycarbonyl)-l -lysine proceeded through the selective elimination of phenol and CO2 from the Nα phenoxycarbonyl moiety at 50 °C in N,N-dimethylacetamide in the presence of a primary amine used as an initiator. After optimization of reaction condition, the addition of acetic acid during polycondensation proved effective for the realization of the predicted molecular weight and narrow dispersity of the corresponding polypeptide by adjusting the feed ratio of monomer to the amine initiator because of the suppression of interchain coupling that occurs between the amino terminus of poly(l -lysine) and the Nε-phenoxycarbonyl group on the polymer side chains. Furthermore, taking advantage of the potentially reactive Nε-phenoxycarbonyl moiety on the side chain, post-polymerization modification was effectively achieved by the nucleophilic reaction of amine compounds including primary, secondary, and aromatic amines through the formation of urea linkage, providing a useful platform for synthesis of selective side chain functionalization of poly(l -lysine) samples. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2522–2530  相似文献   

18.
The synthesis and thermomechanical properties of a novel class of self‐healing perfluoropolyethers (PFPEs) is reported. By decoration of 2‐ureido‐4[1H]‐pyrimidone end groups on the termini of low molar mass PFPE, the formation of supramolecular polymers and networks held together via hydrogen bonding associations was achieved. These novel supramolecular polymer materials exhibit a combination of enhanced modulus and elasticity, along with self‐healing properties, where rapid self‐healing time was demonstrated using dynamic rheological measurements. These types of supramolecular PFPEs are anticipated to be useful for a number of emerging areas in lubrication. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3598–3606  相似文献   

19.
The thermomechanical behavior of polymer nanocomposites is mostly governed by interfacial properties which rely on particle–polymer interactions, particle loading, and dispersion state. We recently showed that poly(methyl methacrylate) (PMMA) adsorbed nanoparticles in poly(ethylene oxide) (PEO) matrices displayed an unusual thermal stiffening response. The molecular origin of this unique stiffening behavior resulted from the enhanced PEO mobility within glassy PMMA chains adsorbed on nanoparticles. In addition, dynamic asymmetry and chemical heterogeneities existing in the interfacial layers around particles were shown to improve the reinforcement of composites as a result of good interchain mixing. Here, the role of chain rigidity in this interfacially controlled reinforcement in PEO composites is investigated. We show that particles adsorbed with less rigid polymers improve the mechanical properties of composites. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 9–14  相似文献   

20.
The synthesis, rheological, and fluorescence properties of a cationic water-soluble copolymer, naphthalene-labeled cationic poly(dimethyl sulfate quaternized acrylamide/N,N-dimethylaminopropylmaleimide copolymer), poly(DSQADMAPM)/NA, are reported. When fluorescent hydrophobes (naphthyl group) are incorporated into the cationic copolymer, the photophysical response may effectively probe solution behavior on the microscopic level. The salt and pH responsiveness inherent to the cationic copolymer systems is a function of ionic group type. Experimental results indicate that IE/IM increases steadily with increases in polymer concentration and IE/IM values for a given polymer concentration are higher in salt. At low pH values, IE/IM is high and excimer emission increases as the quaternary amino groups (R4N+) are screened out. Dynamic light scattering (QELS) measurements indicate that diffusion coefficients of the cationic copolymer increase and the hydrodynamic diameters decrease with increasing salt concentration. Viscosity studies reveal that the polymer coil shrinks as salt is added. In fluorescence quenching study, the reduction in the quenching efficiency of thallium (Tl+) with salt addition can arise from enhanced compartmentalization of naphthalene labels as added electrolyte enhances intrapolymer micellization. The intrapolymer micelle is easily formed, indicating that the thallium ion has difficulty in reacting with bound naphthalenes located in the shrunk polymer coil. The cationic copolymer is depicted as an expanded polymer coil in deionized water because of intra- and interchain repulsions. Consequently, salt addition breaks down the repulsions and enhances intrapolymer micellization. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 11–19, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号