首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The dispersive component of the surface‐free energy, , of cellulose acetate butyrate (CAB) has been determined using the net retention volume, VN, of n‐alkanes (C5? C8) probes in the temperature range 323.15–393.15 K. The values decrease nonlinearly with increase in temperature, and the temperature coefficients of are ? 0.32 (mJ/m2K) and ? 0.10 (mJ/m2K) in the range 323.15–353.15 K and 353.15–393.15 K, respectively. This variation in has been attributed to the structural changes that take place on the surface of CAB at ~353.15 K. The specific components of the enthalpy of adsorption, , and entropy of adsorption, , calculated using VN of polar solutes are negative. The values are used to evaluate Lewis acidity constant, Ka, and Lewis basicity constant, Kb, for the CAB surface. The Ka and Kb values are found to be 0.126 and 1.109, respectively, which suggest that the surface is predominantly basic. The Ka and Kb results indicate for the necessary surface modifications of CAB which act as biodegradable adsorbent material. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Wound healing, one of the most complex processes of the body involving the cooperation of several important biomolecules and pathways, is one of the major therapeutic and economic issues in regenerative medicine. The present study aimed to introduce a novel electrospun curcumin (Cur)‐incorporated chitosan/polyvinyl alcohol/carbopol/polycaprolactone nanofibrous composite for concurrent delivery of the buccal fat pad‐derived mesenchymal stem cells (BFP‐MSCs) and Cur to a full‐thickness wound on the mouse model. Scaffolds were characterized structurally using scanning electron microscopy (SEM), fluorescence microscopy imaging and Fourier‐transform infrared spectroscopy, and toxicity of the scaffolds was also evaluated after BFP‐MSC seeding by SEM imaging and 3‐(4,5 dimethyiazol‐2‐1)‐2‐5‐diphenyl tetrazolium bromide (MTT) assay. Then, its influence on the wound‐healing process was investigated as a wound dressing for a full‐thickness skin defect in mouse model. Results demonstrated that the designed composite scaffolds have the capability for cell seeding and support their growth and proliferation. Macroscopic and histopathological characteristics were evaluated at the end of the 7 and 14 days after surgery, and their results showed that our designed scaffold groups accelerated the wound‐healing process compared with the control group. Among those, scaffold/Cur, scaffold/Cur/BFP‐MSC and scaffold/BFP‐MSC groups demonstrated more wound repair efficacy. These results indicated that the combined grafts can be used to improve the wound‐healing process, and therefore, the electrospun nanofibers presented in this study, Cur and BFP‐MSC together, were demonstrated to have promising potential for wound‐dressing applications.  相似文献   

3.
Poly(lactic acid) (PLA) is a versatile, bioabsorbable, and biodegradable polymer with excellent biocompatibility and ability to incorporate a great variety of active agents. Silver sulfadiazine (SDZ) is an antibiotic used to control bacterial infection in external wounds. Aiming to combine the properties of PLA and SDZ, hydrotalcite ([Mg–Al]‐LDH) was used as a host matrix to obtain an antimicrobial system efficient in delivering SDZ from electrospun PLA scaffolds intended for wound skin healing. The structural reconstruction method was successfully applied to intercalate silver sulfadiazine in the [Mg–Al]‐LDH, as evidenced by X‐ray diffraction and thermogravimetric analyses. Observations by scanning electron microscopy revealed a good distribution of SDZ‐[Mg–Al]‐LDH within the PLA scaffold. Kinetics studies revealed a slow release of SDZ from the PLA scaffold due to the intercalation in the [Mg–Al]‐LDH. In vitro antimicrobial tests indicated a significant inhibitory effect of SDZ‐[Mg–Al]‐LDH against Escherichia coli and Staphylococcus aureus. This antibacterial activity was sustained in the 2.5‐wt% SDZ‐[Mg–Al]‐LDH–loaded PLA nanofibers, which also displayed excellent biocompatibility towards human cells. The multifunctionality of the PLA/SDZ‐[Mg–Al]‐LDH scaffold reported here is of great significance for various transdermal applications.  相似文献   

4.
《先进技术聚合物》2018,29(6):1795-1803
Biodegradable wound dressing of poly glycerol sebacate/poly hydroxy butyrate was fabricated via the coaxial electrospinning process. Simvastatin and ciprofloxacin were loaded in the core and shell of the fibers, respectively. Scanning electron microscopy and transmission electron microscopy images showed a uniform core/shell structure. Introducing drugs into the polymers would cause the dressing samples to become more hydrophilic and degradation to occur faster. Drugs release would face no interventions, in which, approximately 60% of ciprofloxacin was released during the first 24 hours. Simvastatin exhibited a slower and controlled release behavior, with its release peak recorded after 2 days. The drug‐containing samples showed a proper bactericidal activity against both Gram‐positive and Gram‐negative bacteria. It may be concluded that the drug‐laden wound dressing fabricated in this study is capable of releasing the 2 drugs sequentially and that it is the ideal conditions for controlling infections and reducing wound healing duration.  相似文献   

5.

Bioactive glasses (BGs) have gained great attention owing to their versatile biological properties. Combining BG nanoparticles (BGNPs) with polymeric nanofibers produced nanocomposites of great performance in various biomedical applications especially in regenerative medicine. In this study, a novel nanocomposite nanofibrous system was developed and optimized from cellulose acetate (CA) electrospun nanofibers containing different concentrations of BGNPs. Morphology, IR and elemental analysis of the prepared electrospun nanofibers were determined using SEM, FT-IR and EDX respectively. Electrical conductivity and viscosity were also studied. Antibacterial properties were then investigated using agar well diffusion method. Moreover, biological wound healing capabilities for the prepared nanofiber dressing were assessed using in-vivo diabetic rat model with induced wounds. The fully characterized CA electrospun uniform nanofiber (100–200 nm) with incorporated BGNPs exhibited broad range of antimicrobial activity against gram negative and positive bacteria. The BGNP loaded CA nanofiber accelerated wound closure efficiently by the 10th day. The remaining wound areas for treated rats were 95.7?±?1.8, 36.4?±?3.2, 6.3?±?1.5 and 0.8?±?0.9 on 1st, 5th, 10th and 15th days respectively. Therefore, the newly prepared BGNP CA nanocomposite nanofiber could be used as a promising antibacterial and wound healing dressing for rapid and efficient recovery.

  相似文献   

6.
Cellulose acetate (CA) membranes have been widely used as food packaging materials as well as reverse osmosis systems. This study presents the manufacturing of composite CA film with antibacterial properties which is essential for CA film applications in the industry. N‐Halamine precursor of polymethacrylamide‐modified nano‐crystalline cellulose particles (NCC‐PMAMs) were prepared and incorporated into CA film. The composite films with intercalated structure were formed via a solvent‐casting technique. After chlorination, the composite film CA/NCC‐PMAM‐Cl‐1.0 with 1.82 × 1016 atoms/cm2 covalently bonded chlorine showed excellent antibacterial properties by inactivating 6.04 logs of Staphylococcus aureus and 6.27 logs of Escherichia coli within 10 and 5 min, respectively. According to X‐ray diffraction spectra, NCC‐PMAMs behaved as a facilitator for film crystallization. The mechanical strength of the composite film also increased compared with that of pure CA film. However, the composite film became brittle and the maximum decomposition temperature decreased slightly. Preliminary data of in vitro cytocompatibility evaluation indicate that the film is not toxic and has potential use in food packaging. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Ultra‐fine poly(vinyl alcohol) (PVA) electrospun fiber mats containing carbendazim were successfully fabricated by electrospinning from the neat PVA solution containing carbendazim in various amounts based on the weight of PVA. The morphological appearance of both the neat and the carbendazim‐loaded electrospun PVA fibers were smooth and the incorporation of carbendazim in the neat PVA solution did not affect the morphology of the resulting fibers. The average diameters of the neat and the carbendazim‐loaded electrospun PVA fibers ranged between 155 and 160 nm. The chemical integrity of the as‐loaded carbendazim in the carbendazim‐loaded electrospun PVA fiber mats was intact as verified by the 1H‐nuclear magnetic resonance spectroscopy. Thermal properties of the carbendazim‐loaded electrospun PVA fiber mats were analyzed by differential scanning calorimetry and thermogravimetric analysis. The release characteristics of the carbendazim‐loaded electrospun PVA mats were investigated by the total immersion method in distilled water at 30°C. The carbendazim‐loaded electrospun PVA mats exhibited greater amount of carbendazim released than the carbendazim‐loaded as‐cast films. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
An off‐the‐shelf, moisture‐responsive, acetate‐backed adhesive tape is investigated as a commercially available smart material for fabricating low‐cost, multifunctional, humidity‐responsive millimeter‐scale structures. Laser ablation is used for cutting and thinning‐down the tape to enhance its response. Water‐submerged cantilevers show a radius of curvature of 3 mm or lower (for laser‐thinned cantilevers). Additionally, their humidity response is a function of the angle between the longitudinal axis of the cantilever and polymer orientation. A cut angled at 80° with respect to this orientation results in a tip rotation of up to 25°, enabling the formation of bending cantilevers with twisting behavior. The tape cantilevers are further functionalized with magnetic nanoparticles and used to create four‐finger grippers that close underwater within minutes and can sample 100 µL of liquid. A cyclic humidity monitor is also fabricated using a tape strip that walks unidirectionally on a ratchet‐shaped surface upon exposure to humidity variations. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1263–1267  相似文献   

9.
Wound dressing, which can release anti‐infectives in a controlled way, is taking an important role in the treatment and recovery of the open wound. An adequate release of antibiotics can prevent infections from microorganisms effectively. Among the new candidates of fabricating base materials for wound dressing, electrospinning fiber mats are attracting numerous attentions for their excellent performance in controlled drug delivery. The drug release behavior of electrospinning fiber mats can be tuned by changing the chemical components and the geometric structures of the mats. In this study, fiber mats with different geometric structures, which composed of poly‐ε‐caprolactone (PCL), polyethylene glycol (PEG), and ciprofloxacin (Cip) with different blending ratios, were successfully fabricated by direct‐writing melt electrospinning, and the release behavior of Cip were subsequently investigated in vitro. The results showed that the addition of PEG improved the hydrophilicity of the mats, which in turn affected the manner of drug release. The presence of PEG changed the releasing mechanism from a non‐Fickian diffusion into Fickian diffusion, which indicated that the diffusion of Cip from the composite fiber mats became the main factor of drug release instead of polymer degradation. Besides, with the same composition but different geometric structures, the drug release behavior is of significant difference. Therefore, all the Cip‐loaded composite fiber mats showed antibacterial activities but with different efficiency. In summary, the release of the drug could be controlled by adding PEG and changing the geometric structures according to the different requirement of wound dressings.  相似文献   

10.
Cellulose nonwoven mats of submicron‐sized fibers (150 nm–500 nm in diameter) were obtained by electrospinning cellulose solutions. A solvent system based on lithium chloride (LiCl) and N,N‐dimethylacetamide (DMAc) was used, and the effects of (i) temperature of the collector, (ii) type of collector (aluminum mesh and cellulose filter media), and (iii) postspinning treatment, such as coagulation with water, on the morphology of electrospun fibers were investigated. The scanning electron microscopy (SEM) and X‐ray diffraction studies of as‐spun fibers at room temperature reveal that the morphology of cellulose fibers evolves with time due to moisture absorption and swelling caused by the residual salt and solvent. Although heating the collector greatly enhances the stability of the fiber morphology, the removal of salt by coagulation and DMAc by heating the collector was necessary for the fabrication of dry and stable cellulose fibers with limited moisture absorption and swelling. The presence and removal of the salt before and after coagulation have been identified by electron microprobe and X‐ray diffraction studies. When cellulose filter media is used as a collector, dry and stable fibers were obtained without the coagulation step, and the resulting electrospun fibers exhibit good adhesion to the filter media. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1673–1683, 2005  相似文献   

11.
In this study, a new class of heterogeneous membranes based on cellulose acetate (CA) polymer and a complex filler clay‐silica nanowires (SiO2NWs) was investigated for potential biomedical applications. SiO2NWs were synthesized using natural clay through a facile sol–gel method and were dispersed in the polymer solution by sonication in the 1.25, 2.5, and 5% weight ratio to the CA acetate polymer. Membranes were subsequently prepared via phase inversion by precipitation of the CA polymer in water. The pristine CA membrane and SiO2NWs based nanocomposites membranes were characterized using different characterization techniques. The presence of the SiO2NWs in the CA membrane was found to significantly enhance the protein retention, water wettability and thermal as well as mechanical properties in comparison to the pristine CA membrane. Water flows studies at different temperatures and the retention of bovine serum albumin have been studied and the nanocomposite membranes were found to exhibit superior performances compared with the pristine CA membranes. SiO2NWs‐CA membranes showed a much higher stability to the water temperature change during separation than CA membranes. Morphological changes clearly revealed that the composite membrane were much more compact than the pristine CA membranes. The rabbit dermal fibroblasts cell viability in cultures after 72 hr of incubation was found to be greater than 80%. These newly synthesized composite membranes exhibit a high potential to be used for various medical applications because of their non‐cytotoxic characteristics. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Protein capturing on polymeric substrate of microfluidic devices is a key factor for the fabrication of immunoassay with high sensitivity. In this work, simple and versatile technique of electrospinning was used to produce electrospun nanofibrous membranes (e.NFMs) with high surface area as a substrate for microfluidic‐based immunoassay to increase sensitivity. It was found that the simultaneous use of e.NFM and 1‐Ethylethyl‐3‐(3‐dimethylaminopropyl)‐carbodiimide/N‐Hydroxysuccinimide hydroxysuccinimide as coupling agent has synergic effect on antigen immobilization onto the microchannels. It was found that the oxygen plasma technique for the creation of oxygen containing functional group like carboxyl and hydroxyl causes extreme leakage of solution through the microchannels. Thus, due to capillary effect, it is impossible to use hydrophilic substrate to modify microchannels. In order to compensate this problem, it is propose to utilize other type of polymer for the fabrication of nanofiber to answer this important question that if it is possible to enhance the sensitivity of immunoassay just by changing the polymer type? For this purpose, four different polymers, namely, polycaprolactone, poly lactic‐co‐glycolic acid, poly L‐lactic acid, and polyethersolfone were used as the based material for e.NFM fabrication. Results showed that compared with plain poly (dimethylsiloxane) surface of microchannels, poly lactic‐co‐glycolic acidand poly L‐lactic acid, which inherently contain end‐group of carboxyl in their chemical structure, can improve the protein immobilization, which leads to immunoassay signal enhancement through 1‐ethyl‐3‐(3‐dimethylaminopropyl)‐carbodiimide/N‐hydroxysuccinimide coupling chemistry, significantly.  相似文献   

13.
Photocrosslinked hyaluronic acid/poly(vinyl alcohol)‐styrylpyridinium (HA/PVA‐SbQ) hydrogels were synthesized for controlled antitumor drug delivery. The photocrosslinking reaction was rapid, and the time required for completely converting into the insoluble hydrogels was less than 500 s on exposure to 5 mW/cm2 UV light irradiation. The resulting hydrogels exhibited sensitivity to the pH value of the surrounding environment. Scanning electron microscopic analysis revealed that the morphology and the pore size of the hydrogels could be controlled by changing the ratio of HA and PVA‐SbQ in the formulations. Paclitaxel (PTX)‐loaded hydrogel could also be formed rapidly by UV irradiation of a mixed solution of HA/PVA‐SbQ and PTX. Release profiles of PTX from the hydrogels showed pH‐dependent and sustained manner. Moreover, our data revealed that PTX released from the HA hydrogels remained biologically active and had the capability to kill cancer cells. In contrast, control groups of HA hydrogels without PTX did not exhibit any cytotoxicity. This study demonstrates the feasibility of using HA‐based hydrogels as a potential carrier for chemotherapeutic drugs for cancer treatments. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
Nanofibers of naturally modified polymer such as carboxymethyl cellulose (CMC) blended with poly(vinyl alcohol) (PVA) at different ratios was obtained by electrospinning technique. The blended solutions of CMC and PVA loaded with and without diclofenac sodium (DS) were electrospun using environmentally benign electrospinning technique in the absence of organic solvents. Scanning electron microscopy (SEM), Fourier transform infrared (FTIR), thermogravimetric analysis (TGA) were used to investigate the surface morphology functional groups, as well as the thermal stability of DS loaded CMC/PVA nanofibers mat. The mechanical properties of the as prepared electrospun nanofibers was also evaluated. The entrapment efficiency and the in vitro release of DS loaded CMC/PVA nanofibers were characterized using UV-Vis spectroscopy. The obtained results displayed that the blended nanofibers have shown a smooth morphology, no beads formation when the concentration of CMC was equal or below 5% and beads formation above 5%. FTIR data demonstrated that there were good interactions between CMC and PVA possibly via the formation of hydrogen bonds. The electrospun blended CMC/PVA nanofibers exhibit good mechanical properties. From the in vitro release data, it was found that with the presence of CMC, the release of DS from the nanofibers mats became sustained controlled. Due to the biocompatibility and low cost of the two blended polymers (CMC and PVA), the blended nanofibers system can be considered as one of the promising materials for the preparation of excellent drug carrier.  相似文献   

15.
Use of growth factors as biochemical molecules to elicit cellular differentiation is a common strategy in tissue engineering. However, limitations associated with growth factors, such as short half‐life, high effective physiological doses, and high costs, have prompted the search for growth factor alternatives, such as growth factor mimics and other proteins. This work explores the use of insulin protein as a biochemical factor to aid in tendon healing and differentiation of cells on a biomimetic electrospun micro‐nanostructured scaffold. Dose response studies were conducted using human mesenchymal stem cells (MSCs) in basal media supplemented with varied insulin concentrations. A dose of 100‐ng/mL insulin showed increased expression of tendon markers. Synthetic‐natural blends of various ratios of polycaprolactone (PCL) and cellulose acetate (CA) were used to fabricate micro‐nanofibers to balance physicochemical properties of the scaffolds in terms of mechanical strength, hydrophilicity, and insulin delivery. A 75:25 ratio of PCL:CA was found to be optimal in promoting cellular attachment and insulin immobilization. Insulin immobilized fiber matrices also showed increased expression of tendon phenotypic markers by MSCs similar to findings with insulin supplemented media, indicating preservation of insulin bioactivity. Insulin functionalized scaffolds may have potential applications in tendon healing and regeneration.  相似文献   

16.
The aims of this study were to prepare different sizes of electrospun naringin‐loaded microspheres (Ng‐ms) and investigate the effects of the particle size of these microspheres on drug release from naringin‐loaded microsphere/sucrose acetate isobutyrate (Ng‐m‐SAIB) hybrid depots to develop an improved drug delivery system for tissue engineering. Different sizes of microspheres were produced using electrospray methods by controlling electrospinning parameters. The Ng‐m‐SAIB depots were prepared by dispersing Ng‐ms in SAIB depots. The morphology and size distributions of the electrospun Ng‐ms were characterized by polarizing microscopy and scanning electron microscopy (SEM). To better understand the release behavior of Ng‐m‐SAIB, the porosity of SAIB depots was measured. Consequently, both small (2.51 ± 0.191 μm) and large (5.03 ± 0.172 μm) microspheres exhibited smooth surfaces and good monodispersity. The initial and long‐term drug release rates of the large microspheres were lower than those of small microspheres. On the first day after 2.5‐μm and 5‐μm Ng‐m‐SAIB depots were produced, the burst release reduced dramatically from 68.79% to 3.30% and from 63.20% to 0.00%, respectively. After 92 days of release, the drug release rate of 5‐μm Ng‐m‐SAIB was still lower than that of 2.5‐μm Ng‐m‐SAIB, with values of 58.54% and 63.93%, respectively. These results demonstrate that drug release from Ng‐m‐SAIB depots can be tailored solely by varying the size of the microspheres and that good drug release behavior occurred.  相似文献   

17.
Amino acid esters of ethyl cellulose [R′ = H ( 1 ), CH3 ( 2 ), CH2CH(CH3)2 ( 3 ), CH2CONH2 ( 4 ), CH2OCH2C6H5 ( 5 , 5′ ), CH2CH2CH2CH2NHOCOC(CH3)3 ( 6 )] were synthesized in moderate to quantitative yields (30–99%) by the reaction of t‐butoxycarbonyl (t‐Boc)‐protected amino acids or an activated ester derivative with hydroxy groups of ethyl cellulose [EC; degree of substitution (DSEt), 2.69]. The amino acid functionalities displaying varied chemical nature, shape, and bulk were used, and bulk of the substituent on the α‐carbon of amino acids was elucidated to be of vital significance for the observed degree of incorporation (DSEst). 1H NMR spectra were used to determine the degree of incorporation of amino acid moiety (DSEst), and almost complete substitution of the hydroxy protons was revealed in 1 , 2 , and 5′ . The onset temperatures of weight loss of 1 – 6 were 198–218 °C, indicating fair thermal stability. The glass transition temperatures of the derivatized polymers were 30–40 °C lower than that of EC (Tg 131 °C; cf. Tg of 1 – 6 , 93.5–103 °C). Free‐standing membranes of EC and its amino acid esters ( 1 , 2 , 5 , 5′ , and 6 ) were fabricated, and enhanced permselectivity for CO2/N2 and CO2/CH4 gas pairs was discerned, when compared with EC. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3986–3993, 2010  相似文献   

18.
These days, Ophthalmic wound treatment is a major problem; due to its nature, bio/materials are the best choices as wound dressing materials. The main objective of the current survey is to develop and investigate effective wound dressing materials for skin care applications. In these ways, we combined the good biological properties of Cobalt-doped hydroxyapatite particles (CoHAp) with the structural properties of Polycaprolactone (PCL)/ carboxymethyl cellulose (CMC) nanofibers. Electrospinning and co-precipitation methods were used to synthesize nanofibers and CoHAp particles, respectively. Nanocomposites were synthesized in the absence and different percentages of CoHAp. The PCL/CMC, PCL/CMC/CoHA 5 %, PCL/CMC/CoHA 10 %, and PCL/CMC/CoHA 15 % formulated nanocomposites have the diameter of 383 ± 50, 391 ± 84, 441 ± 65, and 495 ± 99 nm, respectively. The synthesized nanofibrous wound dressing porosity and water absorption capacity were in the range of 40 to 60 % and 32 to 63 %, respectively. Hemo and cytocompatibility of the nanofibrous wound dressing were analyzed by in vitro evaluation, and the results were satisfactory and the structures were fully biocompatible. The PCL/CMC/CoHA 10 % wound dressing, were selected as the best nanocomposites for wound healing based on our animal studies on the healing outcomes. The results showed that the PCL/CMC nanofibers-Cobalt-doped HAp wound dressing is an effective bioactive nano-biomaterials for the wound healing process.  相似文献   

19.
Cellulose acetate (CA) microfiltration membranes were prepared by two‐stage vapor‐induced phase separation (VIPS) and immersion precipitation. To improve the hydrophilicity and permeability of the membranes at low operating pressures, plasma‐treated natural zeolite was incorporated into the membranes. A response surface methodology based on the three‐level central composite design (CCD) was used to model and optimize the casting solution composition of the membranes with the aim of maximizing membranes permeability. Three independent variables for CCD optimization were concentration of CA, polyvinylpyrrolidone (PVP) pore former, and plasma‐treated zeolite additive. The results showed that a second‐order polynomial model could properly predict the response (pure water flux) at any input variable values with a satisfying determination coefficient (R2) of 0.954. Also, analysis of variance (ANOVA) confirmed the adequacy of the obtained model. The permeability of the prepared membranes increased by increasing zeolite loading from 0.10 to 0.50 wt%, which was related to the membranes morphology and porosity and confirmed by scanning electron microscopy (SEM) images. Pure water flux of the membranes decreased by increasing CA concentration while an optimum PVP amount was required to reach the maximum flux. The result of the bubble point analysis well matched with surface SEM images of the membranes and permeability trend predicted by CCD model. Also, the prepared CA membranes with different compositions showed no toxicity for mouse L929 fibroblast, which indicated their nontoxic and biocompatible nature.  相似文献   

20.
One‐dimensional nanofibers have attracted tremendous attention because of their potential applications. Electrospinning technology enables industrial production of these nanofibers. This study aims to fabricate one‐dimensional ZnO doped TiO2 by electrospinning and to characterize these hybrid nanofibers. The nanocomposite was prepared using colloidal gel composed of zinc nitrate, titanium isopropoxide and polyvinyl acetate. X‐ray diffraction, energy dispersive x‐ray analysis and transmission electron microscopy analysis confirmed the purity and crystalline nature of this material, whereas the diameter of these nanofibres estimated from scanning electron microscope (SEM), field emission SEM and transmission electron microscopy are between 200 and 300 nm. Cell counting with Kit‐8 assay at regular time intervals and phase‐contrast microscopy data revealed that C2C12 cells proliferated well on ZnO/TiO2 nanofibers between 1 and 10 µg/ml, and cellular attachments are visible by SEM. The nanostructured ZnO/TiO2 hybrid nanofibers show higher cell adhesion, proliferation and spreading behavior compared with the titanium substrate and control. Our study suggests that ZnO/TiO2 nanofibers could potentially be used in tissue engineering applications. The scalability, low cost, reproducibility and high‐throughput capability of this technology is potentially beneficial to examine and optimizing a wide array of cell‐nanofiber systems prior to in vivo experiments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号