首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(3,4‐ethylenedioxythiophene) (PEDOT) solid and hollow microspheres were successfully synthesized by simply adjusting the concentration of 3,4‐ethylenedioxythiophene (EDOT) and the molar ratio of EDOT to ammonium persulfate (APS) (represented by (EDOT)/(APS)), respectively. Microwave absorbing properties of PEDOT microspheres with tunable reflection loss (RL) and microwave frequency band were described in detail. The relationships between the conductivity and RL of PEDOT microspheres were also discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Monosubstituted and disubstituted 3,4‐propylenedioxythiophenes were synthesized and polymerized by both chemical and electrochemical methods. All the monomers were characterized for their molecular structures, and the polymers were characterized for their electrochemical properties. The disubstituted derivatives showed higher contrast than the corresponding monoalkyl derivatives. The highest electrochromic contrast of 89% was exhibited by a dibenzyl derivative, but the derivative was insoluble. On the other hand, the electrochemically polymerized dihexyl‐ and didodecyl‐substituted poly(3,4‐propylenedioxythiophene)s exhibited 74 and 77% electrochromic contrast, respectively, and were soluble. The molecular weights of the chemically and electrochemically synthesized polymers were analyzed by gel permeation chromatography. The chemically synthesized polymers showed higher molecular weights. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 419–428, 2005  相似文献   

3.
A nonaqueous dispersion of poly(3,4‐ethylenedioxythiophene) (PEDOT) was prepared with the use of polymeric ionic liquid (PIL) as a polymerization template and phase transfer medium. A detailed investigation was performed to understand the role of PIL in the course of polymerization and phase transfer reaction. On the basis of our findings from X‐ray photoelectric spectroscopy (XPS), we propose a mechanism by which the PIL leads to the nanostructured PEDOT colloids in various organic solvents and thus facilitating smoother surface morphologies of the PEDOT‐PIL films. In addition, the enhancement of charge transport was observed for PEDOT‐PIL complex when compared with PEDOT without PIL. Raman spectroscopy indicates that there is a reduced interaction between the charge carriers on the PEDOT and the counter ions bound to PIL, thus promoting charge carrier hopping rates. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6872–6879, 2008  相似文献   

4.
A new conducting composite polymer film is obtained by vapor phase polymerization of 3,4‐ethylenedioxythiophene (EDOT) on a biocompatible polyanion derived from the partial sulfonation (32%) of statistical ethylene vinyl alcohol copolymer (EVAL32). EVALS32 and the oxidant (iron(III) p‐toluenesulfonate, [PTS]) are contemporaneously spin coated from a methanol/water solution on glass slide. EVALS32–PTS‐coated glass slides are exposed to EDOT vapors, and the polymerization is followed by Vis–NIR spectroscopy. We observed that PEDOT slowly grows into the bulk of EVALS32 matrix. Thanks to the sulfonic groups of the polyanion acting as doping agents, a highly conjugate p‐doped EVALS32‐PEDOT composite film with a good conductivity (1.6 × 102 S cm?1), transparency, and stability in water is obtained. The EVALS32–PEDOT film seems an ideal candidate for the preparation of organic devices to be applied in electronics, biosensor, or actuation technology. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1203–1210  相似文献   

5.
Conducting nanofiber composed of poly(vinyl alcohol) (PVA), graphene quantum dots (GQDs) and poly(3,4‐ethylenedioxythiophene) (PEDOT) was prepared for symmetrical supercapacitor through electrospinning and electropolymerization techniques. The formation of PVA nanofibers with the addition of GQDs was excellently prepared with the average diameter of 55.66 ± 27 nm. Field emission scanning electron microscopy images revealed that cauliflower‐like structure of PEDOT was successfully coated on PVA‐GQD electrospun nanofibers. PVA‐GQD/PEDOT nanocomposite exhibited the highest specific capacitance of 291.86 F/g compared with PVA/PEDOT (220.73 F/g) and PEDOT (161.48 F/g). PVA‐GQD/PEDOT also demonstrated a high specific energy and specific power of 16.95 and 984.48 W/kg, respectively, at 2.0 A/g current density. PVA‐GQD/PEDOT exhibited the lowest resistance of charge transfer (Rct) and equivalent series resistance compared with PEDOT and PVA/PEDOT, indicating that the fast ion diffusion between the electrode and electrolyte interface. PVA‐GQD/PEDOT nanocomposite also showed an excellent stability with retention of 98% after 1000 cycles. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 50–58  相似文献   

6.
2‐((2,3‐Dihydrothieno[3,4‐b]dioxin‐2‐yl)methoxy)methyl oxirane (EDOT‐MO) was successfully synthesized by the reaction of epichlorohydrin with hydroxymethylated‐3,4‐ethylenedioxylthiophene (EDOT‐MeOH), which was synthesized via a simple four‐step sequence. Poly(hydroxymethylated‐3,4‐ethylenedioxylthiophene) (PEDOT‐MeOH) and poly(2‐((2,3‐dihydrothieno[3,4‐b]dioxin‐2‐yl)methoxy)methyl oxirane) (PEDOT‐MO) were electrosynthesized through electropolymerization of EDOT‐MeOH and EDOT‐MO, respectively. Structural, electrochemical, optical, and thermal properties of as‐formed polymers were investigated by FTIR, cyclic voltammetry, UV–vis, and thermogravimetry. Spectroelectrochemistry studies demonstrated that PEDOT‐MeOH and PEDOT‐MO could be reversibly oxidized and reduced accompany with obvious color changes. Further kinetic studies demonstrated that the introduction of hydroxymethyl or ethylene oxide group significantly improved electrochromic properties of 3,4‐ethylenedioxythiophene (PEDOT) and resulted in high contrast ratios (57.3% at 585 nm) and coloration efficiencies (338.5 cm2 C?1), low switching voltages, and fast response time. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1989–1999  相似文献   

7.
Poly(3,4‐ethylenedioxythiophene) (PEDOT) counter electrode is prepared with in situ polymerization of 3,4‐ethylenedioxythiophene on a fluorine‐doped tin oxide over‐layer glass at room temperature. The cyclic voltammetry, electrochemical impedance spectroscopy, and Tafel polarization are measured to evaluate the catalytic activity of PEDOT counter electrode for I3?/I? redox couple. Comparing the data with that of traditional thermal decomposed Pt counter electrode, it is found that PEDOT has higher catalytic activity than that of Pt counterpart. Power conversion efficiency of the dye‐sensitized solar cell (DSC) with PEDOT counter electrode can attain to 7.713%, a little higher than that of the cell with Pt counter electrode (7.300%). Taking the advantage of high transparency of PEDOT counter electrode, an Ag mirror is put on the back side of PEDOT counter electrode of the DSC to reflect light back for power conversion. Power conversion efficiency of the DSC with this special structure can be further enhanced to 8.359%, which mainly stems from the improved short‐circuit current density by the increased irradiated light intensity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Vapor‐phase polymerization (VPP) is an important method for the fabrication of high‐quality conducting polymers, especially poly(3,4‐ethylenedioxythiophene) (PEDOT). In this work, the effects of additives and post‐treatment solvents on the thermoelectric (TE) performance of VPP‐PEDOT films were systematically investigated. The use of 1‐butyl‐3‐menthylinidazolium tetrafluoroborate ([BMIm][BF4], an ionic liquid) was shown to significantly enhance the electrical conductivity of VPP‐PEDOT films compared with other additives. The VPP‐PEDOT film post‐treated with mixed ethylene glycol (EG)/[BMIm][BF4] solvent displayed the high power factor of 45.3 μW m?1 K?2 which is 122% higher than that prepared without any additive or post‐treatment solvent, along with enhanced electrical conductivity and Seebeck coefficient. This work highlighted the superior effect of the [BMIm][BF4] additive and the EG/[BMIm][BF4] solvent post‐treatment on the TE performance of the VPP‐PEDOT film. These results should help with developing the VPP method to fabricate high‐performance PEDOT films. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55 , 1738–1744  相似文献   

9.
Summary: The 3,4‐ethylenedioxythiophene (EDOT) monomer in a chiral nematic liquid‐crystal electrolyte was polymerized by application of a voltage to yield a thin film. Circular dichroism measurements indicated a Cotton effect for the film. Optical texture suggests that the polymer shows a finger‐print texture and a spiral texture similar to that of the chiral nematic phase. This simple method provides a new technique for preparing chiral conducting films in a thermotropic chiral liquid‐crystal field.

Optical micrograph of (R)‐PEDOT* (no polarizer).  相似文献   


10.
CE can efficiently separate poly(3,4‐ethylenedioxythiophene)/poly(styrene sulfonic acid) (PEDOT/PSS) complexes and free PSS in dispersions and can be used to estimate the degree of PSS doping. We investigated the doping efficiency of PSS on PEDOT in dispersions using CE and its effect on the conductivity of the resulting PEDOT/PSS films. Results of this study indicate that dispersions containing 1:2.5–3 EDOT:PSS feed ratio (by weight) exhibiting 72–73% PSS doping generate highly processable and highly conductive films. Conductivity can be optimized by limiting the time of reaction to 12 h. At this point of the reaction, the PEDOT/PSS segments, appearing as broad band in the electropherogram, could still exist in an extended coil conformation favoring charge transport resulting in high conductivity. Above a threshold PEDOT length formed at reaction times longer than 12 h, the PEDOT/PSS complex, appearing as spikes in the electropherogram, most likely have undergone a conformational change to coiled core‐shell structure restricting charge transport resulting in low conductivity. The optimal conductivity (5.2 S/cm) of films from dispersions synthesized for 12 h is significantly higher than those from its commercial equivalent Clevios P and other reported values obtained under similar conditions without the addition of codopants.  相似文献   

11.
In the past two decades, many research is being carried out on coating of textile membranes with conductive polymers. In order to functionalize the textile membranes, coating of different intrinsically conductive polymers can be applied on these membranes through appropriate coating techniques like electrochemical polymerization, wet chemical oxidation and chemical vapor deposition (CVD). Noticeably, CVD process is one of the most suitable and environment friendly technique. In this research, microporous polyester and polytetrafluoroethylene (PTFE) membranes were coated with conductive poly(3,4‐ethylenedioxythiophene) (PEDOT) by CVD process in the presence of ferric(III)chloride (FeCl3) used as an oxidant. Polymerization of PEDOT on the surface of membranes and pore size was examined by optical microscope and scanning electron microscopy (SEM). Structural analysis investigated with ATR‐FTIR, which revealed the successful deposition of PEDOT on membranes without damaging their parent structures. The amount of PEDOT in PEDOT‐coated polyester and PTFE membranes was explored with the help of thermogravimeteric analysis. Electrical resistance values of PEDOT‐coated membranes were measured by two probe method. The effect of different electrolyte solutions such as, distilled H2O, Na2SO4, HCl, and H2SO4 on electrical properties of produced conductive membranes was investigated after dipping for certain period of time. It was found that membranes dipped in H2SO4 show very low electrical resistance values, i.e. 0.85 kΩ for polyester membrane and 1.17 kΩ for PTFE membrane. The obtained PEDOT‐coated electro‐active membranes may find their possible utility in fuel cells, enzymatic fuel cells, and antistatic air filter applications. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
The synthesis by oxidative polymerization of well‐defined poly(3,4‐ethylenedioxythiophene) (PEDOT) nano‐objects in the presence of modified and unmodified poly(N‐vinylpyrrolidone)‐based copolymers used as stabilizers in aqueous media is reported. Ammonium persulfate or a mixture of ammonium persulfate with CuCl2 or CuBr2 was used as oxidants. The effects of several parameters such as the molar mass and the concentration of the stabilizer as well as the nature of the oxidants on the size, morphology, and the conductivity of the PEDOT particles have been investigated. The distribution of the reactive moieties along the copolymer stabilizer backbone was shown to be crucial to get well‐defined PEDOT nano‐objects. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3841–3855, 2010  相似文献   

13.
Composite films of poly(3,4‐ethylenedioxythiophene) (PEDOT)‐coated over functionalized multiwalled coiled and linear carbon nanotubes (CNTs) have been fabricated by a simple oxidative electropolymerization route. The nanotubular morphology of the polymer–CNT composite is responsible for the lower charge transfer impedance, lower internal resistance, and superior capacitive response in comparison to that shown by the control PEDOT film doped by trifluoromethanesulfonate ions. This facile electrochemistry exhibited by the PEDOT–CNT composite film ensues in a remarkably high coloration efficiency of 367 cm2 · C−1 at 550 nm, hitherto unrealized for PEDOT; thus demonstrating the huge potential the PEDOT–CNT composite film has as cathode for the entire spectrum of electrochromic devices.

  相似文献   


14.
Systematic research on the synthesis, chemical oxidative polymerization of 3,4‐ethylenedithiathiophene (EDTT) in the presence of surfactants or not, and solid‐state polymerization of 2,5‐dibromo‐3,4‐ethylenedithiathiophene (DBEDTT) and 2,5‐diiodo‐3,4‐ethylenedithiathiophene (DIEDTT) under solventless and oxidant‐free conditions has been investigated. Effects of oxidants (Fe3+ salts, persulfate salts, peroxides, and Ce4+ salts), solvents (H2O, CH3CN/H2O, and CH3CN), surfactants, and so forth on polymerization reactions and properties of poly(3,4‐ethylenedithiathiophene) (PEDTT) were discussed. Characterizations indicated that FeCl3 was more suitable oxidant for oxidative polymerization of EDTT, while CH3CN was a better solvent to form PEDTT powders with higher yields and electrical conductivities. Dispersing these powders in aqueous polystyrene sulfonic acid (PSSH) solution showed better stability and film‐forming property than sodium dodecylsulfate and sodium dodecyl benzene sulfonate. Oxidative polymerization of EDTT in aqueous PSSH solutions formed the solution processable PEDTT dispersions with good storing stability and film‐forming performance. Solvent treatment showed indistinctive effect on electrical conductivity of free‐standing PEDTT films. As‐formed PEDTT synthesized from solid‐state polymerization showed similar electrical conductivity, poorer stability, but better thermoelectric property than oxidative polymerization. Contrastingly, PEDTT synthesized from DIEDTT showed higher electrical conductivity (0.18 S cm?1) than DBEDTT which showed better thermoelectric property with higher power factor value (6.7 × 10?9 W m?1 K?2). © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
Vapor phase silylation of poly(4‐hydroxystyrene sulfone) (PHOSS) film was carried out with (trimethylsilyl)dimethylamine (TMSDMA) as a silylation reagent. Infrared spectroscopy was used to follow the silylation. Phenolic hydroxyl groups were trimethylsilylated, but desulfonylation of PHOSS was greatly enhanced simultaneously. The reaction rates were investigated at reaction temperatures of 50, 60, and 70°C. The rate of silylation increased with increasing reaction temperature. However, the rate of desulfonylation was very fast in the presence of TMSDMA and was virtually invariant with reaction temperature. It was confirmed that trimethylsilylation in the polymer side chain of PHOSS enhanced desulfonylation in the main chain. Trimethylsilylation might be expected to lower the ceiling temperature of the polymer. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1549–1554, 1999  相似文献   

16.
Polymeric nanowires of poly(3,4‐ethylenedioxythiophene) (PEDOT) are electrochemically synthesized using porous anodic alumina oxide (AAO) membranes as templates. Four‐point resistivity measurements on more than 100 PEDOT nanowires with different diameters (50–250 nm) reveal a statistically significant size‐dependent phenomenon in which the nanowires with a smaller diameter exhibit higher conductivity. Structural characterization with Raman spectroscopy and doping level estimation with energy‐dispersive X‐ray spectrometry and X‐ray photoelectron spectroscopy indicate that the observed conductivity enhancement can be attributed to improved carrier mobility in PEDOT nanowires having an elongated conjugation structure because of the effect of the AAO template. From the estimated doping levels (~5%) and conductivity data (~100 S/cm), it is found that the carrier mobility reach 2.0 cm2/V s for the nanowire with the smallest diameter, as compared with 4.0 × 10?4 cm2/V s for a bulk PEDOT film. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

17.
Sub‐micrometer layers of electrochemically prepared methyl‐ and decyl‐substituted poly(3,4‐ethylenedioxythiophene) (PEDOT) carrying perchlorate counterions have been examined with grazing incidence X‐ray diffraction with synchrotron radiation. The materials were found to be partially crystalline, and the data could be ascribed to a model of sheets of π‐π stacked polymer chains with a smectic ordering of these sheets. An unsubstituted PEDOT sample with the polymeric polystyrenesulfonic acid as a counterion was also investigated and turned out to be essentially amorphous. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 945–952, 2003  相似文献   

18.
《先进技术聚合物》2018,29(1):310-318
In this work, high‐performance fibers such as aramid (Twaron), polyamide (PA6), polyester (PET), and hybrid Twaron/PA6 fibers were transformed into electroactive fibers by coating them with conjugated polymer, poly(3,4‐ethylenedioxythiophene) (PEDOT) through vapor phase polymerization (VPP) method. The VPP is considered as an efficient technique for depositing CPs on different substrates regardless of their lower solubility in various solvents. In this paper, PEDOT‐coated high‐performance fibers were prepared under already optimized reaction conditions, and then a comparison between electrical, thermal, and mechanical properties of different fibers, before and after coating, was made. The obtained coated fibers were characterized through scanning electron microscope (SEM), thermogravimetric analysis (TGA), 2‐probe electrical resistance measurement method, and tensile testing. It was revealed that at particular reaction conditions, all high performance textile substrates were successfully converted into electroactive fibers. The voltage‐current (V‐I) characteristics showed that PEDOT‐coated polyester fibers exhibited highest conductivity value among all other substrate fibers. The active PEDOT layers on high performance fibers could behave as an antistatic coating to minimize the risks associated with static charges at work places. Also, the obtained fibers have potential to be used as smart materials for various medical, sports, and military applications.  相似文献   

19.
Transparent [90% transmittance at 550 nm at a sheet resistance (Rs) of 279 Ω sq?1] poly(3,4‐ethylenedioxythiophene) (PEDOT) films with electrical conductivities up to 1354 S cm?1 are prepared using base‐inhibited vapor phase polymerization at atmospheric pressure. The influence of reaction conditions, such as temperature and growth time, on the film formation is investigated. A simple and convenient two‐electrode method is used for the in situ measurement of resistance, enabling to investigate the growth mechanism of polymer films and the influence of different parameters (relative humidity and the amount of oxidant) on the film growth. Low humidity exerts a detrimental effect on film growth and conductivity. In situ Rs measurements suggest that a large structural change occurs upon washing the PEDOT‐oxidant film. © 2014 Wiley Periodicals, Inc. J Polym Sci Part B: Polym. Phys. 2014 , 52, 561–571  相似文献   

20.
Poly(3,4‐ethylenedioxythiophene) (PEDOT) films are deposited, using an electroless method, onto flexible plastic poly(ethylene terephthalate) (PET) substrates of approximately 20×6 cm2. The sheet resistance of a PEDOT–PET film is approximately 600 Ω per square, and the nanoscale conductivity is 0.103 S cm?1. A plastic electrochromic PEDOT–Prussian blue device is constructed. The device undergoes a color change of pale blue to deep violet–blue reversibly over 1000 cycles, thus demonstrating its use as a light‐modulating smart window. The PEDOT–PET film is also used in a quantum dot solar cell, and the resulting photoelectrochemical performance and work function indicate that it is also promising for photovoltaic cells. The high homogeneity of the PEDOT deposit on PET, the optimal balance between conductivity and optical transparency, and the demonstration of its use in an electro‐optical device and a solar cell, offer the opportunity to use this electrode material in a variety of low‐cost optoelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号