共查询到20条相似文献,搜索用时 62 毫秒
1.
This review covers recent advances in developing square arrays in thin films using block copolymers. Theoretical and experimental results from self‐assembly of block copolymers in bulk and thin films, directed self‐assembly of block copolymers confined in small wells, on substrates with arrays of posts, and on chemically nanopatterned substrates, as well as applications as nanolithography are reviewed. Some future work and hypothesis are discussed. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013 相似文献
2.
Marc A. Hillmyer Timothy P. Lodge 《Journal of polymer science. Part A, Polymer chemistry》2002,40(1):1-8
Fluorinated block copolymers combine the unique properties of fluoropolymers and the intriguing self‐assembly of hybrid macromolecules. The preparation of the title molecules by selective fluorination procedures and the effect of fluorine incorporation on the material thermodynamics are presented. We highlight two fluorination schemes developed in our laboratory, difluorocarbene and perfluoroalkyliodide additions to polydienes, that allow for the selective and tunable incorporation of different fluorinated groups into model block copolymers. The fluorination changes the physical properties of the parent materials and leads to interesting changes in the component incompatibilities. The role of fluorination in determining block copolymer thermodynamics in both the solid state and in solution and in ultimately exploiting fluorination to produce novel, higher order structures is central to our research efforts. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 1–8, 2002 相似文献
3.
Simona Todaro Clelia Dispenza Maria Antonietta Sabatino Maria Grazia Ortore Rosa Passantino Pier Luigi San Biagio Donatella Bulone 《Journal of Polymer Science.Polymer Physics》2015,53(24):1727-1735
Xyloglucan is a natural polysaccharide having a cellulose‐like backbone and hydroxyl groups‐rich side‐chains. In its native form the polymer is water‐soluble and forms gel only in presence of selected co‐solutes. When a given fraction of galactosyl residues are removed by enzymatic reaction, the polymer acquires the ability to form a gel in aqueous solution at physiological temperatures, a property of great interest for biomedical/pharmaceutical applications. This work presents data on the effect of a temperature increase on degalactosylated xyloglucan dispersed in water at concentration low enough not to run into macroscopic gelation. Results obtained over a wide interval of length scales show that, on increasing temperature, individual polymer chains and pre‐existing clusters self‐assemble into larger structures. The process implies a structural rearrangement over a few nanometers scale and an increase of dynamics homogeneity. The relation of these findings to coil‐globule transition and phase separation is discussed. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1727–1735 相似文献
4.
Chunhua Cai Wenjie Zhu Tao Chen Jiaping Lin Xiaohui Tian 《Journal of polymer science. Part A, Polymer chemistry》2009,47(22):5967-5978
Synthesis and self‐assembly behavior of a novel amphiphilic brush‐coil block copolymer bearing hydrophilic poly(ethylene glycol) segment and hydrophobic polypeptide brush segment were presented in this work. The poly(γ‐benzyl‐L ‐glutamate) (PBLG) brush is synthesized through “grafting from” strategy by ring‐opening polymerization of γ‐benzyl‐L ‐glutamate‐N‐carboxyanhydride (BLG‐NCA) initiated by the flanking terminal primary amino group of macroinitiator. The copolymers were characterized by 1H NMR, gel permeation chromatography, Fourier transform infrared, circular dichroism spectrum, and differential scanning calorimetry. The self‐assembly behavior of the brush‐coil block copolymers in aqueous solution was investigated by means of transmission electron microscopy, scanning electron microscopy, atomic force microscopy, and laser light scattering. Spherical micelles were observed when the length of PBLG brush is shorter. The aggregate morphology transforms to spindle‐like micelles and then to rod‐like micelles, as the length of polypeptide brush increases. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5967–5978, 2009 相似文献
5.
Zhuo Yi Xuanbo Liu Qing Jiao Erqiang Chen Yongming Chen Fu Xi 《Journal of polymer science. Part A, Polymer chemistry》2008,46(12):4205-4217
Novel amphiphilic comb‐dendronized diblock copolymers composed of hydrophobic Percec‐type dendronized polystyrene block and hydrophilic comb‐like poly(ethylene oxide) grafted polymethacrylate P(PEOMA) block were designed and synthesized via two steps of atom transfer radical polymerization (ATRP). The comb‐like P(PEOMA) prepared by ATRP of macromonomers (PEOMA) with two different molecular weights (Mn = 300 and 475) were used to initiate the sequent ATRP of dendritic styrene macromonomer (DS). The molecular weights and compositions of the obtained block copolymers were determined by 1H NMR analysis. The copolymers with relatively narrow polydispersities (1.27–1.38) were thus obtained. The bulk properties of comb‐dendronized block copolymers were studied by using differential scanning calorimetry, polarized optical microscopy and wide‐angle X‐ray diffraction (WAXD). Similar to dendronized homopolymers, the block copolymers exhibited hexagonal columnar liquid‐crystalline phase structure. By using such amphiphilic comb‐dendronized block copolymers as building blocks, the rich self‐assembly morphologies, such as twisted string, vesicle, and large compound micelle (LCM), were obtained in a mixture of CH3OH and THF. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4205–4217, 2008 相似文献
6.
Robert B. Grubbs 《Journal of polymer science. Part A, Polymer chemistry》2005,43(19):4323-4336
The combination of metals and polymers in hybrid materials is a research area of great current interest. A number of methods for controlling the positioning of metallic species within polymer matrices on the nanometer scale have been developed. This highlight focuses on the use of functional block copolymers for the localization of metal species, especially nanoparticles, on the nanometer scale through block copolymer phase segregation. Research from the author's group on the use of alkyne‐functional block copolymers for the preparation of cobalt‐containing materials is discussed in this context. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4323–4336, 2005 相似文献
7.
Satyananda Barik Suresh Valiyaveettil 《Journal of polymer science. Part A, Polymer chemistry》2014,52(15):2217-2227
A facile synthetic strategy for preparing hydroxylated polymethacrylate amphiphilic block copolymers (PCzMMA‐b‐PBMMA, PFlMMA‐b‐PBMMA) incorporated with primary and secondary hydroxyl groups and electroactive moieties along the polymer backbone is reported. Full characterization, structure‐property relationship and self‐assembly of these polymers are discussed. Due to interplay of hydrophobic/hydrophilic interactions, PCzMMA‐b‐PBMMA formed a layered lattice and PFlMMA‐b‐PBMMA showed a vesicular morphology. Electropolymerization of the electroactive units led to the formation of cross‐conjugated polymer network in solution and in thin films. The network structure was characterized with a range of spectroscopic techniques. Such highly processable polymers may be of interest to applications in which a conducting amphiphilic films with strong adhesion to various substrates are required. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2217–2227 相似文献
8.
9.
Nicky Chan Nathan Yee So Young An Jung Kwon Oh 《Journal of polymer science. Part A, Polymer chemistry》2014,52(14):2057-2067
New poly(ethylene oxide)‐based block copolymers (ssBCs) with a random copolymer block consisting of a reduction‐responsive disulfide‐labeled methacrylate (HMssEt) and a thermoresponsive di(ethylene glycol)‐containing methacrylate (MEO2MA) units were synthesized. The ratio of HMssEt/MEO2MA units in the random P(MEO2MA‐co‐HMssEt) copolymer block enables the characteristics of well‐defined ssBCs to be amphiphilic or thermoresponsive and double hydrophilic. Their amphiphilicity or temperature‐induced self‐assembly results in nanoaggregates with hydrophobic cores having different densities of pendant disulfide linkages. The effect of disulfide crosslinking density on morphological variation of disulfide‐crosslinked nanogels is investigated. In response to reductive reactions, the partial cleavage of pendant disulfide linkages in the hydrophobic cores converts the physically associated aggregates to disulfide‐crosslinked nanogels. The occurrence of in‐situ disulfide crosslinks provides colloidal stability upon dilution. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2057–2067 相似文献
10.
Lizhi Hong Zhenghe Zhang Yuan Zhang Weian Zhang 《Journal of polymer science. Part A, Polymer chemistry》2014,52(18):2669-2683
A novel POSS‐containing methacrylate monomer (HEMAPOSS) was fabricated by extending the side chain between polyhedral oligomeric silsesquioxane (POSS) unit and methacrylate group, which can efficiently decrease the steric hindrance in free‐radical polymerization of POSS‐methacrylate monomer. POSS‐containing homopolymers (PHEMAPOSS) with a higher degree of polymerization (DP) can be prepared using HEMAPOSS monomer via reversible addition–fragmentation chain transfer (RAFT) polymerization. PHEMAPOSS was further used as the macro‐RAFT agent to construct a series of amphiphilic POSS‐containing poly(N, N‐dimethylaminoethyl methacrylate) diblock copolymers, PHEMAPOSS‐b‐PDMAEMA. PHEMAPOSS‐b‐PDMAEMA block copolymers can self‐assemble into a plethora of morphologies ranging from irregular assembled aggregates to core‐shell spheres and further from complex spheres (pearl‐necklace‐liked structure) to large compound vesicles. The thermo‐ and pH‐responsive behaviors of the micelles were also investigated by dynamic laser scattering, UV spectroscopy, SEM, and TEM. The results reveal the reversible transition of the assembled morphologies from spherical micelles to complex micelles was realized through acid‐base control. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2669‐2683 相似文献
11.
Zhifeng Jia Yongfeng Zhou Deyue Yan 《Journal of polymer science. Part A, Polymer chemistry》2005,43(24):6534-6544
Novel amphiphilic star‐block copolymers, star poly(caprolactone)‐block‐poly[(2‐dimethylamino)ethyl methacrylate] and poly(caprolactone)‐block‐poly(methacrylic acid), with hyperbranched poly(2‐hydroxyethyl methacrylate) (PHEMA–OH) as a core moiety were synthesized and characterized. The star‐block copolymers were prepared by a combination of ring‐opening polymerization and atom transfer radical polymerization (ATRP). First, hyperbranched PHEMA–OH with 18 hydroxyl end groups on average was used as an initiator for the ring‐opening polymerization of ε‐caprolactone to produce PHEMA–PCL star homopolymers [PHEMA = poly(2‐hydroxyethyl methacrylate); PCL = poly(caprolactone)]. Next, the hydroxyl end groups of PHEMA–PCL were converted to 2‐bromoesters, and this gave rise to macroinitiator PHEMA–PCL–Br for ATRP. Then, 2‐dimethylaminoethyl methacrylate or tert‐butyl methacrylate was polymerized from the macroinitiators, and this afforded the star‐block copolymers PHEMA–PCL–PDMA [PDMA = poly(2‐dimethylaminoethyl methacrylate)] and PHEMA–PCL–PtBMA [PtBMA = poly(tert‐butyl methacrylate)]. Characterization by gel permeation chromatography and nuclear magnetic resonance confirmed the expected molecular structure. The hydrolysis of tert‐butyl ester groups of the poly(tert‐butyl methacrylate) blocks gave the star‐block copolymer PHEMA–PCL–PMAA [PMAA = poly(methacrylic acid)]. These amphiphilic star‐block copolymers could self‐assemble into spherical micelles, as characterized by dynamic light scattering and transmission electron microscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6534–6544, 2005 相似文献
12.
The crystal and molecular structures of a series of structurally related 1,2,3‐triazole‐4,5‐dicarboxylate (LHtzdc = 1,2,3‐triazole‐4,5‐dicarboxylate) ligands for second metal ions were established via single‐crystal X‐ray structural analysis. [Cu (en)]2+ (en = ethylenediamine) was selected as a second metal ion, the two spare sites of the O atom from LHtzdc are coordinated to a single [Cu (en)]2+, and the [Cu (en)]2+ metal centres act as two outer pockets, which is an effective and innovative method of controlling the assembly of heterometallic cages. 相似文献
13.
Cong Hu Bingyang Dong Li Liu 《Journal of polymer science. Part A, Polymer chemistry》2019,57(12):1333-1343
We report on the preparation of reduction‐responsive amphiphilic block copolymers containing pendent p‐nitrobenzyl carbamate (pNBC)‐caged primary amine moieties by reversible addition–fragmentation chain transfer (RAFT) radical polymerization using a poly(ethylene glycol)‐based macro‐RAFT agent. The block copolymers self‐assembled to form micelles or vesicles in water, depending on the length of hydrophobic block. Triggered by a chemical reductant, sodium dithionite, the pNBC moieties decomposed through a cascade 1,6‐elimination and decarboxylation reactions to liberate primary amine groups of the linkages, resulting in the disruption of the assemblies. The reduction sensitivity of assemblies was affected by the length of hydrophobic block and the structure of amino acid‐derived linkers. Using hydrophobic dye Nile red (NR) as a model drug, the polymeric assemblies were used as nanocarriers to evaluate the potential for drug delivery. The NR‐loaded nanoparticles demonstrated a reduction‐triggered release profile. Moreover, the liberation of amine groups converted the reduction‐responsive polymer into a pH‐sensitive polymer with which an accelerated release of NR was observed by simultaneous application of reduction and pH triggers. It is expected that these reduction‐responsive block copolymers can offer a new platform for intracellular drug delivery. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1333–1343 相似文献
14.
The self‐assembly behavior of poly(isoprene‐b‐acrylic acid) and poly(styrene‐b‐2‐vinylpyridine) amphiphilic block copolymers, as well as a poly(styrene‐r‐2‐vinylpyridine) amphiphilic random copolymer was investigated in slightly selective organic solvents (tetrahydrofuran and toluene) in the presence of Ag and Au ions and subsequently Ag, Au metal nanoparticles, by means of dynamic light scattering. In the range of concentrations studied the copolymers exist in the form of micelles with cores composed of acrylic acid and 2‐vinylpyridine segments in equilibrium with unimers. The addition of metal ions and their subsequent transformation to metal nanoparticles shifts the equilibrium in favor of the micelles. The concentration of the inorganic components has also a considerable effect on the size of the polymeric aggregates. A similar behavior is observed for the random copolymer. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR‐FTIR), UV‐visible spectroscopy, and transmission electron microscopy (TEM) give valuable additional information on the nature of the interactions between the polymeric and inorganic components, as well as on the characteristics of the metal nanoparticles and the hybrid micelles formed in each case. The presented results have a direct relation to the synthesis of metal nanoparticles under confinement by utilization of copolymer nanoreactors and appropriate solution conditions. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1515–1524, 2008 相似文献
15.
Daniel F. Sunday Elizabeth Ashley Lei Wan Kanaiyalal C. Patel Ricardo Ruiz R. Joseph Kline 《Journal of Polymer Science.Polymer Physics》2015,53(8):595-603
Block copolymer directed self‐assembly (BCP) with chemical epitaxy is a promising lithographic solution for patterning features with critical dimensions under 20 nm. In this work, we study the extent to which lamellae‐forming poly(styrene‐b‐methyl methacrylate) can be directed with chemical contrast patterns when the pitch of the block copolymer is slightly compressed or stretched compared to the equilibrium pitch observed in unpatterned films. Critical dimension small angle X‐ray scattering complemented with SEM analysis was used to quantify the shape and roughness of the line/space features. It was found that the BCP was more lenient to pitch compression than to pitch stretching, tolerating at least 4.9% pitch compression, but only 2.5% pitch stretching before disrupting into dislocation or disclination defects. The more tolerant range of pitch compression is explained by considering the change in free energy with template mismatch, which suggests a larger penalty for pitch stretching than compressing. Additionally, the effect of width mismatch between chemical contrast pattern and BCP is considered for two different pattern transfer techniques. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 595–603 相似文献
16.
Charles‐André Fustin Pierre Guillet Matthew J. Misner Thomas P. Russell Ulrich S. Schubert Jean‐François Gohy 《Journal of polymer science. Part A, Polymer chemistry》2008,46(14):4719-4724
The self‐assembly of a metallo‐supramolecular PS‐[Ru]‐PEO block copolymer, where ‐[Ru]‐ is a bis‐2,2′:6′,2″‐terpyridine‐ruthenium(II) complex, in thin films was investigated. Metallo‐supramolecular copolymers exhibit a different behavior as compared to their covalent counterparts. The presence of the charged complex at the junction of the two blocks has a strong impact on the self‐assembly, effecting the orientation of the cylinders and ordering process. Poly(ethylene oxide) cylinders oriented normal to the film surface are obtained directly regardless of the experimental conditions over a wide range of thicknesses. Exposure to polar solvent vapors can be used to improve the lateral ordering of the cylindrical microdomains. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4719–4724, 2008 相似文献
17.
Chung‐Yang Chuang Trong‐Ming Don Wen‐Yen Chiu 《Journal of polymer science. Part A, Polymer chemistry》2010,48(11):2377-2387
In this research, stimuli‐responsive porous/hollow nanoparticles were prepared by the self‐assembly method. First, chitosan‐graft‐poly(N‐isopropylacrylamide) (CS‐g‐PNIPAAm) copolymers were synthesized through polymerization of N‐isopropylacrylamide (NIPAAm) monomer in the presence of chitosan (CS) solution using ceric ammounium nitrate as the initiator. Then, the CS‐g‐PNIPAAm copolymers were dissolved in the acetic acid aqueous solution and heated to 40 °C to induce their self‐assembly. After CS‐g‐PNIPAAm assembled to form micelles, a cross‐linking agent was used to reinforce the structure to form nanoparticles. The molecular weight of grafted PNIPAAm on CS chains was changed to investigate its effect on the structure, morphology, thermo‐, and pH‐responsive properties of the nanoparticles. TEM images showed that a porous or hollow structure in the interior of nanoparticles was developed, depending on the medium temperature. The synthesized nanoparticles carried positive charges on the surface and exhibited stimuli‐responsive properties, and their mean diameter thus could be manipulated by changing the pH value and temperature of the environment. The nanoparticles showed a continuous release of the encapsulated doxycycline hyclate up to 10 days during an in vitro release experiment. These porous/hollow particles with environmentally sensitive properties are expected to be used in hydrophilic drug delivery system. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2377–2387, 2010 相似文献
18.
Tianbin Ren An Wang Weizhong Yuan Lan Li Yue Feng 《Journal of polymer science. Part A, Polymer chemistry》2011,49(10):2303-2313
Star‐shaped amphiphilic poly(ε‐caprolactone)‐block‐poly(oligo(ethylene glycol) methyl ether methacrylate) with porphyrin core (SPPCL‐b‐POEGMA) was synthesized by combination of ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP). Star‐shaped PCL with porphyrin core (SPPCL) was prepared by bulk polymerization of ε‐caprolactone (CL) with tetrahydroxyethyl‐terminated porphyrin initiator and tin 2‐ethylexanote (Sn(Oct)2) catalyst. SPPCL was converted into SPPCLBr macroinitiator with 2‐bromoisobutyryl bromide. Star‐shaped SPPCL‐b‐POEGMA was obtained via ATRP of oligo(ethylene glycol) methyl ether methacrylate (OEGMA). SPPCL‐b‐POEGMA can easily self‐assemble into micelles in aqueous solution via dialysis method. The formation of micellar aggregates were confirmed by critical micelle formation concentration, dynamic light scattering, and transmission electron microscopy. The micelles also exhibit property of temperature‐induced drug release and the lower critical solution temperature (LCST) was 60.6 °C. Furthermore, SPPCL‐b‐POEGMA micelles can reversibly swell and shrink in response to external temperature. In addition, SPPCL‐b‐POEGMA can present obvious fluorescence. Finally, the controlled drug release of copolymer micelles can be achieved by the change of temperatures. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
19.
Physicochemical characterization of the thermo‐induced self‐assembly of thermo‐responsive PDMAEMA‐b‐PDEGMA copolymers 下载免费PDF全文
Michael Wagner Christian Pietsch Andreas Kerth Anja Traeger Ulrich S. Schubert 《Journal of polymer science. Part A, Polymer chemistry》2015,53(7):924-935
Diblock copolymers of poly[2‐(dimethylamino)ethyl methacrylate]‐block‐poly[di(ethylene glycol) methyl ether methacrylate], PDMAEMA‐b‐PDEGMA, were synthesized by reversible addition–fragmentation chain transfer polymerization. The block ratio was varied to study the influence on the lower critical solution temperature and the corresponding phase transition in water. Therefore, turbidimetry, differential scanning calorimetry (DSC), dynamic light scattering (DLS), and laser Doppler velocimetry were applied. Additionally, asymmetric flow field‐flow fractionation (AF4) coupled to DLS and multiangle laser light scattering (MALLS) was established as an alternative route to characterize these systems in terms of molar mass of the polymer chain and size of the colloids after the phase transition. It was found that AF4–MALLS allowed accurate determination of molar masses in the studied range. Nevertheless, some limitations were observed, which were critically discussed. The cloud point and phase transition of all materials, as revealed by turbidimetry, could be confirmed by DSC. For block copolymers with block ratios in the range of 50:50, a thermo‐induced self‐assembly into micellar and vesicular structures with hydrodynamic radii (Rh) of around 25 nm was observed upon heating. At higher temperatures, a reordering of the self‐assembled structures could be detected. The thermo‐responsive behavior was further investigated in dependence of pH value and ionic strength. Variation of the pH value mainly influences the solubility of the PDMAEMA segment, where a decrease of the pH value increases the transition temperature. An increase of ionic strength leads to a reduction of the cloud point due to the screening of electrostatic interactions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 924–935 相似文献
20.
Ke‐Li Zhong Zhegang Huang Zhijin Man Long Yi Jin Bingzhu Yin Myongsoo Lee 《Journal of polymer science. Part A, Polymer chemistry》2010,48(6):1415-1422
The rod‐coil molecules with n‐shaped rod building block, consisting of an anthracene unit and two biphenyl groups linked together with acetylenyl bonds at the 1,8‐position of anthracene as a rigid rod segment, and the alkyl or alkyloxy chains with various length (i.e., methoxy‐ ( 1 ), octyl‐ ( 2 ), hexadecyl‐ ( 3 )) at the 10‐position of anthracene and poly(ethylene oxide) with the number of repeating units of 7 connected with biphenyl as coil segments were synthesized. The molecular structures were characterized by 1H NMR and MALDI‐TOF mass spectroscopy. The self‐assembling behavior of new type of molecules 1–3 was investigated by means of DSC, POM, and SAXS at the bulk state. These molecules with a n‐shaped rod building block segment self‐assemble into supramolecular structures through the combination of π–π stacking of rigid rod building blocks and microphase separation of the rod and coil blocks. SAXS studies reveal that molecules 1 and 2 show hexagonal columnar and rectangular columnar structures in the liquid crystalline phase, respectively; meanwhile, molecules 1–3 self‐organize into lamellar structures in the crystalline state. In addition, self‐assembling studies of molecules 1–3 by DLS and TEM indicated that these molecules self‐assemble into elongated nanofibers in aqueous medium. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1415–1422, 2010 相似文献