共查询到4条相似文献,搜索用时 0 毫秒
1.
Hai‐Rong Hu Mao‐Chu Gong Anmin Tian Ning‐Bew Wong 《International journal of quantum chemistry》2003,91(6):675-684
The slight energy differences among the three isomers of 1,4‐difluorobutadiene have been investigated by Gaussian‐3 (G3) theory. The computational results suggest that the Gaussian‐3–Becke's three‐parameter functional (G3B3) theoretical estimates are in good agreement with experimental data. Mulliken population analysis also has been performed to interpret the anomalous equilibrium relationship among these three isomers. Wire mesh contours of the highest occupied molecular orbital (HOMO) orbitals of these isomers help to illustrate the cis effect visually. Natural bond orbital (NBO) analysis indicates that the origin of cis preference among the three isomers may lie in the configurational orientation and the n‐π conjugative interaction between fluorine atom and C?C double bond. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2003 相似文献
2.
This work presents the substituent effects on the 1H and 13C NMR chemical shifts in the cis-isomer of 3-Y-cyclohexanols (Y = Cl, Br, I, CH3, N(CH3)2 and OCH3) and 3-Y-1-methoxycyclohexanes (Y = F, Cl, Br, I, CH3, N(CH3)2 and OCH3). It was observed that the H-3 chemical shift, due to the substituent alpha-effect, increases with the increase of substituent electronegativity when Y is from the second row of the periodic table of elements, (CH3 *sigma(C3--H3a) interaction energy. This interaction energy, for the halogenated compounds, decreases with an increase in size of the halogen, and this is a possible reason for the largest measured chemical shift for H-3 of the iodo-derivatives. The beta-effect of the analyzed compounds showed that the chemical shift of hydrogens at C-2 and C-4 increases with the decrease of n(Y) --> *sigma(C2-C3) and n(Y) --> *sigma(C3-C4) interaction energies, respectively, showing a behavior similar to H-3. The alpha-effect on 13C chemical shifts correlates well with substituent electronegativity, while the beta-effect is inversely related to electronegativity in halogenated compounds. NBO analysis indicated that the substituent inductive effect is the predominant effect on 13C NMR chemical shift changes for the alpha-carbon. It was also observed that C-2 and C-4 chemical shifts for compounds with N(CH3)2, OCH3 and F are more shielded in comparison to the compounds having a halogen, most probably because of the larger interaction of the lone pair of more electronegative atoms (n(N) > n(O) > n(F)) with *sigma(C2-C3), *sigma(C3-C4) and *sigma(C3-H3a) in comparison with the same type of interaction with the lone pair of the other halogens. 相似文献
3.
《中国化学会会志》2017,64(5):522-530
In this study, we report the substituent effect on the structures, frontier orbital analysis, and spectroscopic properties (IR , 13C , 29Si NMR ) in the molybdenum silylidyne complexes CpMo (CO )2(≡Si‐para ‐C6H4X ) (X = H, F, Cl, CN , NO2 , Me, OMe , NH2 , NHMe ) using MPW1PW91 quantum chemical calculations. The calculated structural parameters and spectral parameters are compatible with the experimental values in similar complexes. The nature of the chemical bond between the [Cp(OC ) 2Mo ]− and [Si‐para ‐C6H4X ]+ fragments was explored with energy decomposition analysis (EDA ). The percentage composition in terms of the defined groups of frontier orbitals for CpMo (CO )2(≡Si‐para ‐C6H4X ) complexes was investigated to explore the character of the metal–ligand bonds. The linear correlations between the properties and Hammett constants (σ p) were illustrated. Natural bond orbital analysis (NBO ) was used to illustrate the electronic structure of the complexes. 相似文献
4.
Wenzeng Duan Zhaofeng Sun Yanmin Huo Yanke Liu Guangqing Wu Ruifeng Wang Shuang Wu Qingxia Yao Shuwen Gong 《应用有机金属化学》2018,32(9)
A novel NHC–Pd complex of 1,3‐bis (4‐ethoxycarbonylphenyl) imidazolium chloride has been synthesized and characterized by 1H NMR, 13C NMR, IR and X‐ray single‐crystal diffraction studies. TG analysis shows that the NHC‐Pd complex is stable under 208 °C. The catalytic activities have been explored for the synthesis of axially chiral N‐(2′‐methoxy‐1,1′‐binaphthalen‐2‐yl) benzophenone hydrazone. The result indicates that the novel NHC‐Pd complex can achieve better catalytic activity than the Pd‐phosphine catalysts in the synthesis of axially chiral N‐(2′‐methoxy‐1,1′‐binaphthalen‐2‐yl) benzophenone hydrazone. 相似文献