首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
High performance continuous fiber surface modification by inductively coupled RF plasma (ICP) and dielectric barrier discharge (DBD) low temperature plasma were conducted. X-ray photoelectron spectroscopy (XPS) and other analytical testing methods systematically studied plasma treatment time, discharge power, discharge pressure, etc, on fiber surface state, surface composition, and surface shape changes in the appearance and wetting properties. The results show that after plasma treatment the surface of the fiber is grafted with a large number of polar functional groups such as carboxyl groups and hydroxyl groups. The surface roughness increases, the surface free energy increases, and the fiber wetting property is significantly improved, resulting in improvement in interlaminar shear strength (ILSS) between the fiber and the resin matrix. Finally, the surfaces of the fibers and its relationship with interfacial properties of fiber reinforced bismaleimide composites are also discussed.  相似文献   

2.
    
Inclusion of two or more distinct fillers (hybrid fillers) in a matrix is envisaged to entail synergetic advantages. This study reports synthesis and property evaluation of a novel hybrid filler‐based polymer composite containing two types of fillers with distinct attributes namely mechanical reinforcement and internal lubrication. Poly(tetrafluoroethylene) micro‐particles (PTFEMP) were synthesized via radiolytic‐mechanical degradation and used as an internal lubricant for organoclay (OC) reinforced ethylene vinyl acetate (EVA) matrix. Mechanical hysteresis, nonlinear and linear small amplitude oscillatory shear rheology, morphology, small angle X‐ray scattering (SAXS), dynamic coefficient of friction (DCoF), surface wetting and thermoxidative stability of binary and ternary composites were investigated. In EVA/OC composites, PTFEMP acted as an internal lubricant and reduced DCoF in a volume fraction‐dependent fashion. OC and PTFEMP both increased the mechanical hysteresis of EVA; though the magnitude of hysteresis was much less in PTFEMP. Intriguingly, PTFEMP reduced mechanical hysteresis of EVA/OC composites that is work done during loading and unloading stress–strain cycles was considerably reduced with the inclusion of PTFEMP in EVA/OC composites. SAXS results revealed mass fractals and the presence of an interfacial layer in EVA/OC composites but not in EVA/PTFEMP composites. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 509–519  相似文献   

3.
A time‐dependent oxidation of carbon fibers in boiling nitric acid was used to investigate the influence of a modification of the fiber surface properties on the adhesion strength with an acrylate resin cured by electron beam (EB). For each time of treatment, a characterization of the surface topography and the surface chemistry was done (topography at a micrometric and nanometric scale, specific surface area, temperature programmed desorption, X‐ray photoelectron spectroscopy analysis). The oxidation of the fiber surface in boiling nitric acid created a rough surface, which significantly increased the specific surface area, and also generated a high density of hydroxyl groups, carboxylic acids and lactones in comparison to untreated fibers. The adhesion strength with the acrylate resin cured by EB was measured by a pull‐out test. For comparison, an isothermal ultraviolet curing of the matrix was also investigated. The value of the interfacial shear strength, determined by the Greszczuk's model, was increased by the oxidation of the carbon fiber surface for both curing processes, but lower values were systemically obtained with EB curing. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
    
Thermal conductive and antistatic polyetherimide (PEI) nanocomposites were fabricated by encapsulating non‐destructive amido group functionalized multi‐walled carbon nanotubes (MWCNTs) into the PEI matrix. Briefly, nearly half of acyl chloride groups in poly (acryloyl chloride) reacted with sodium azide and formed acyl azide groups, which could conjunct with MWCNTs via non‐destruction nitrenes addition reaction. The remaining acyl chloride groups in poly (acryloyl chloride) hydrolyzed into carboxyl groups, therefore COOH‐rich MWCNTs (MWCNTs@azide polyacrylic acid) were synthesized without serious damage to the MWCNTs. Then, MWCNTs@azide polyacrylic acid were then reacted with p‐Phenylene diamine (PPD) and transformed to amido group functionalized MWCNTs (MWCNTs@PPD). MWCNTs@PPD could participate into the in situ polymerization of PEI matrix, where the conjunction between bisphenol A dianhydride and amido groups on MWCNTs@PPD guaranteed the strong covalent bonding at the PEI/MWCNTs interface, which directly avoided the aggregation of MWCNTs. Owing to the non‐destructive modification of MWCNTs and tight matrix/filler interface, the volume electric and thermal conductivity of as‐prepared nanocomposites was up to 6.4 × 10?8 S/cm (1.0 wt%, MWCNTs@PPD) and 0.43 W/(m · K) (4.0 wt%, MWCNTs@PPD), respectively. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
In the present work, zinc oxide nanoparticles were treated with aminopropyl trimethoxy silane‐coupling agent and used as a new kind of reinforcement for a typical high performance bisphenol‐A‐based phthalonitrile resin. The resulted nanocomposites were characterized for their mechanical, thermal, and optical properties. Results from the tensile test indicated that the tensile strength and modulus as well as the toughness state of the matrix were all enhanced with the increasing of the nanoparticles amount. Thermogravimetric analysis showed that the starting decomposition temperatures and the residual weight at 800°C were highly improved upon adding the nanofillers. At 6 wt% nanoloading, the glass transition temperature and the storage modulus were considerably enhanced reaching about 359°C and 3.7 GPa, respectively. The optical tests revealed that the neat resin possesses excellent UV‐shielding properties, which were further enhanced by adding the nanofillers. Furthermore, the fractured surfaces of the nanocomposites analyzed by scanning electron microscope exhibited homogeneous and rougher surfaces compared with that of the pristine resin. Finally, the good dispersion of the reinforcing phase into the matrix was confirmed by a high resolution transmission electron microscope. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
The interfacial shear strength is a critical parameter for assessing composite performance and failure behavior. This parameter is usually obtained from a single‐fiber fragmentation test that induces sequential fracture with increasing strain of a single embedded fiber with output being the distribution of fragment lengths. An exact analytical form for the expected fragment length distribution is still not known. Such data are often fit empirically to Weibull, shifted‐exponential, or lognormal distribution functions. In this report, new insights into the sequential fiber fracture process are provided by detailed analyses of the fiber break locations along the length of the embedded fiber. From this approach, the high degree of uniformity of the break coordinate loci strongly suggests that there can be no mechanistic rationale for the use of the Weibull, or lognormal, or exponential functions to fit the fragment lengths. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2301–2312, 2009  相似文献   

7.
Fabrication of biodegradable composites applicable as hard tissue substitutes consisting of poly(ε‐caprolactone fumarate) (PCLF), methacrylic acid (MAA), and hydroxyapatite (HA) was investigated. PCLF macromers were synthesized by reaction of PCL diol with fumaryl chloride in the presence of propylene oxide and characterized by gel permeation chromatography, FTIR, and 1H NMR spectroscopy. Composites were fabricated by incorporating HA as inorganic filler in PCLF matrix which followed by thermal curing of the composition using benzoyl peroxide and MAA as a free radical initiator and reactive diluent, respectively. Uniform distribution of the fine ceramic phase in the polymer matrix was elucidated by scanning electron microscopy. The effects of the initial macromer molecular weight and the filler volume fraction on mechanical properties and cytotoxicity of the composites were also examined. Significant enhancement in the mechanical properties was observed upon increasing HA content and/or initial PCLF molecular weight. The biocompatibility of the specimens was also improved with increasing ceramic phase. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
A series of composite membranes consisting of sulfonated carbon nanotubes (sCNTs) and sulfonated poly(ether sulfone ether ketone ketone) were successfully fabricated via the solution casting method. The chemical structure, as well as the long‐term stability of the sCNTs in different solvents, was investigated by Fourier transform infrared (FTIR) analysis and solubility experiment, respectively. The morphology, tensile strength, proton conductivity, and methanol permeability of the composite membranes were also investigated. The scanning electron microscope (SEM) observation indicated the good dispersion of the carbon nanotubes in polymer matrix as well as the strong interfacial bonding between the sulfonated poly(ether sulfone ether ketone ketone) (SPESEKK) matrix and sCNTs. The addition of either pristine carbon nanotubes or modified carbon nanotubes significantly enhanced the tensile strength of the SPESEKK membrane. The proton conductivity of the SPESEKK membrane increased while the methanol permeability decreased as the sCNTs content increased, showing a strong interaction between the modified nanotubes and SPESEKK. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Self‐reinforced composites based on commercial polypropylene (PP) woven fabrics and a random PP copolymer modified with quartz were obtained by film stacking. The effect of the incorporation of quartz on the materials fracture and failure behavior was studied through uniaxial tensile tests and quasi‐static fracture experiments. Acoustic emission analysis was also performed in situ in the tensile tests. A higher consolidation quality was obtained for the composites containing quartz. In the composite with random PP modified with 5 wt% quartz, the higher consolidation and the better dispersion of quartz particles positively impacted on the materials tensile and fracture behavior. From the results of acoustic emission analysis, fiber fracture appears as the dominant failure mechanism in the investigated composites. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
11.
The electrical conductivity, thermoelectrical, and optical properties of the polyaniline containing boron/double wall carbon nanotubes (CNTs) composites have been investigated. The electrical conductivities of the composites prepared with 1%, 5%, and 8% CNT concentrations at 300 K were found to be 5.31 × 10?6, 2.72 × 10?4, and 1.12 × 10?3 (S/cm), respectively. The thermoelectrical results indicate that all the samples exhibit n‐type electrical conductivity. The optical band gaps of the samples were found to be 3.71 eV for 0% DWNT, 3.32 eV for 1% DWNT, 3.15 eV for 5% DWNT, and 3.12 eV for 8% DWNT. The obtained results suggest that the electrical conductivity of PANI‐B polymer is improved by DWNT doping. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
13.
    
《先进技术聚合物》2018,29(6):1661-1669
Recently, carbon nanofibers have become an innovative reinforcing filler that has drawn increased attention from researchers. In this work, the reinforcement of acrylonitrile butadiene rubber (NBR) with carbon nanofibers (CNFs) was studied to determine the potential of carbon nanofibers as reinforcing filler in rubber technology. Furthermore, the performance of NBR compounds filled with carbon nanofibers was compared with the composites containing carbon black characterized by spherical particle type. Filler dispersion in elastomer matrix plays an essential role in polymer reinforcement, so we also analyzed the influence of dispersing agents on the performance of NBR composites. We applied several types of dispersing agents: anionic, cationic, nonionic, and ionic liquids. The fillers were characterized by dibutylphtalate absorption analysis, aggregate size, and rheological properties of filler suspensions. The vulcanization kinetics of rubber compounds, crosslink density, mechanical properties, hysteresis, and conductive properties of vulcanizates were also investigated. Moreover, scanning electron microscopy images were used to determine the filler dispersion in the elastomer matrix. The incorporation of the carbon nanofibers has a superior influence on the tensile strength of NBR compared with the samples containing carbon black. It was observed that addition of studied dispersing agents affected the performance of NBR/CNF and NBR/carbon black materials. Especially, the application of nonylphenyl poly(ethylene glycol) ether and 1‐butyl‐3‐methylimidazolium tetrafluoroborate contributed to enhanced mechanical properties and electrical conductivity of NBR/CNF composites.  相似文献   

14.
    
Graphene‐polyaniline/nickel hydroxide ternary hybrid (RGO‐PANI/Ni(OH)2) was synthesized and incorporated into epoxy resin (EP) to improve the fire retardant property. Thermogravimetric analysis results showed that the RGO‐PANI/Ni(OH)2 nanohybrid could catalyze the thermal degradation of epoxy matrix that was essential to trigger the char formation. The char yield of the RGO‐PANI/Ni(OH)2/EP composite was improved compared with that of the samples with graphene and polyaniline only. With 3.0‐wt% RGO‐PANI/Ni(OH)2, significant reduction in peak heat release rate (40%) and peak smoke production rate (36%) was observed in the cone calorimeter tests. Thermogravimetric analysis/infrared spectrometry (TG‐IR) results indicated that the flammable volatiles of the RGO‐PANI/Ni(OH)2/EP composite was reduced compared with those of the EP and RGO‐PANI/EP. The superior flame retardant and smoke suppressant behaviors of the RGO‐PANI/Ni(OH)2 nanohybrid over RGO‐PANI were attributed to the combination of good barrier effect of graphene with catalytic ability of char formation of PANI and metal hydroxide.  相似文献   

15.
Property variability in conjunction with morphological variability are important sources of uncertainty in composite modeling. While image processing of experimental microstructures has enabled accurate quantification of morphological variability, the characterization of material variability is not as well established. In this study, the local material properties of epoxy extracted from a prepreg sheet was determined using nanoindentation with a spherical indenter tip with a radius of 50 μm. Indentations were carried out at four different indentation depths to evaluate the change in the variability of epoxy modulus with the sampling volume. For each length scale studied, 40 indentations were carried out to determine the variability in epoxy modulus. A significant decrease was observed in the coefficient of variation as the indentation depth increased. The corresponding modulus distributions were quantified. The results suggest that, similar to morphological variability, material variability is length-scale dependent and the appropriate variability associated with the selected length scale must be considered for stochastic modeling of composite structures.  相似文献   

16.
The results of thermal conductivity study of epoxy–matrix composites filled with different type of powders are reported. Boron nitride and aluminum nitride micro‐powders with different size distribution and surface modification were used. A representative set of samples has been prepared with different contents of the fillers. The microstructure was investigated by SEM observations. Thermal conductivity measurements have been performed at room temperature and for selected samples it was also measured as a function of temperature from 300 K down to liquid helium temperatures. The most spectacular enhancement of the thermal conductivity was obtained for composites filled with hybrid fillers of boron nitride–silica and aluminum nitride–silica. In the case of sample with 31 vol.% of boron nitride–silica hybrid filler it amounts to 114% and for the sample with 45 vol.% of hybrid filler by 65% as compared with the reference composite with silica filler. However, in the case of small aluminum nitride grains application, large interfacial areas were introduced, promoting creation of thermal resistance barriers and causing phonon scattering more effective. As a result, no thermal conductivity improvement was obtained. Different characters of temperature dependencies are observed for hybrid filler composites which allowed identifying the component filler of the dominant contribution to the thermal conductivity in each case. The data show a good agreement with predictions of Agari‐Uno model, indicating the importance of conductive paths forming effect already at low filler contents. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Novel propargyl that contains phenolic resins via azo‐coupling reaction was synthesized. Peculiarities of curing process were investigated by differential scanning calorimetry analysis. Polymerization of resins with azo groups was estimated to be affected by radicals obtained at resin decomposition causing 10°C peak shift to lower temperatures in comparison with resin containing only propargyl group. At the same time, polymerization of triple propargyl bond was shown to not proceed at radical initiation until Cleisen rearrangement and chromene formation. Thermogravimetric analysis revealed increase of thermal stability by 170–190°C and char yield by up to 20% for modified resins in comparison with original novolac resin. Heat deflection temperature estimated by dynamic mechanical analysis was also shown to be increased by at least 110°C for modified resins in comparison with novolac resin. All the synthesized resins are soluble in acetone and used for preparation of unidirectional glass fiber‐based composites. Flexural strength and modulus for modified resins‐based composites were shown to increase by at least 25% and 10% correspondingly in comparison with novolac‐based composite. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
The tensile properties of self-reinforced polypropylene composites, obtained by rapid extension of an isotactic polypropylene/atactic polypropylene melt, have been measured and correlated to morphological parameters derived from x-ray experiments. The longitudinal morphology of the core-fibrils is found to be independent of sample composition, while the lateral thickness of the fibers varies between 220 Å for iPP and 110 Å for the blend containing 50 wt.% aPP. Critical fiber lengths, as a function of sample composition and the elastic modulus and the yield stress of the fibers, could be determined. While the number of corefibrils increases with mass fraction of atactic polypropylene, the length of the lateral interface between fiber and matrix and the interface volume decreases with increasing aPP mass fraction. It is shown that this interface is responsible for the mechanical behavior of the composite by effecting the transfer of load from matrix to fiber.  相似文献   

19.
In this work, the technology of nano‐ and micro‐scale particle reinforcement concerning various polymeric fiber‐reinforced systems including polyamides (PAs), polyesters, polyurethanes (PUs), polypropylenes (pps), and high‐performance/temperature engineering polymers such as polyimide (PI), poly(ether ether ketone) (PEEK), polyarylacetylene (PAA), and poly p‐phenylene benzobisoxazole (PBO) is reviewed. When the diameters of polymer fiber materials are shrunk from micrometers to submicrons or nanometers, there appear several unique characteristics such as very large surface area to volume ratio (this ratio for a nanofiber can be as large as 103 times of that of a microfiber), flexibility in surface functionalities and superior mechanical performance (such as stiffness and tensile strength) compared to any other known form of the material. While nanoparticle reinforcement of fiber‐reinforced composites has been shown to be a possibility, much work remains to be performed in order to understand how nanoreinforcement results in dramatic changes in material properties. The understanding of these phenomena will facilitate their extension to the reinforcement of more complicated anisotropic structures and advanced polymeric composite systems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
树脂基复合材料具有比强度高、比模量大、耐高温、耐腐蚀、质轻等诸多优点,在航天军工、生物医疗、电子封装、体育器材等众多领域得到广泛应用。石墨烯作为一种典型的二维纳米材料,凭借其独特结构以及优异的物理化学性能而备受关注。近年来的研究表明石墨烯可以通过对增强纤维改性和对基体树脂改性的方法来提高树脂基复合材料的力学性能。本文介绍了石墨烯改性树脂基复合材料的增强增韧机理,对石墨烯改性纤维(碳纤维、玻璃纤维、芳纶纤维)增强复合材料以及树脂的改性方法进行了综述;着重阐述了石墨烯改性树脂基复合材料力学性能的研究进展,分析了石墨烯改性树脂基复合材料研究中依旧存在的两大问题,即石墨烯的分散性和界面结合问题,并对石墨烯改性树脂基复合材料的未来发展前景进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号