首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Well‐defined linear poly(L ‐lactide)s with one or two arms (LPLLA and 2LPLLA, respectively) and star‐shaped poly(L ‐lactide)s with four or six arms (4sPLLA and 6sPLLA, respectively) were synthesized and then used for the investigation of the thermal properties, isothermal crystallization kinetics, and spherulitic growth. The maximal melting temperature, the cold‐crystallization temperature, and the degree of crystallinity of these poly(L ‐lactide) polymers decreased with an increasing number of arms in the macromolecule. Moreover, the isothermal crystallization rate constant (K) of these poly(L ‐lactide) polymers decreased in the order of KLPLLA > K2LPLLA > K4sPLLA > K6sPLLA2, which was consistent with the variation trend of the spherulitic growth rate (G). Meanwhile, both K and G of 6sPLLA slightly increased with the increasing molecular weight of the polymer. Furthermore, both LPLLA and 2LPLLA presented spherulites with good morphology and apparent Maltese cross patterns, whereas both unclear Maltese cross patterns and imperfect crystallization were observed for the star‐shaped 4sPLLA and 6sPLLA polymers. These results indicated that both the macromolecular architecture and the molecular weight of the polymer controlled K, G, and the spherulitic morphology of these poly(L ‐lactide) polymers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2226–2236, 2006  相似文献   

2.
The synthesis and characterization of dendritic homopolymers and block copolymers of ?‐caprolactone and lactide (L ‐lactide and racemic lactide) were performed with multifunctional initiators in combination with living polymerization and the selective placement of branching junctures in a divergent growth strategy. A hexahydroxy‐functional 2,2‐bis(hydroxymethyl) propionic acid derivative was used as an initiator for the stannous‐2‐ethylhexanoate‐catalyzed living ring‐opening polymerization of ?‐caprolactone, L ‐lactide, and racemic L ,D ‐lactide. Branching junctions at the chain ends were introduced with benzylidene‐protected 2,2‐bis(hydroxymethyl) propionic acid. Subsequent generations were then polymerized, after deprotection, from these star‐shaped macroinitiators. Successive chain end capping and initiation produced three generations of polymers with molecular weights in excess of 130,000 g/mol and narrow polydispersities (<1.20). It was possible to prepare diblock and triblock copolymers with phase‐separated morphologies, and with L ‐lactide or D ,L ‐lactide, semicrystalline and amorphous morphologies were demonstrated. The polymers were characterized by 1H NMR, 13C NMR, size exclusion chromatography, and differential scanning calorimetry. The compositions of the block copolymers and the conformational structures of the optically active polymers were also confirmed by optical rotation measurements. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1174–1188, 2004  相似文献   

3.
Linear telechelic, α,ω‐ditelechelic, and star‐shaped tri‐, tetra‐, penta‐, and hexa‐arm poly(L ‐lactide)s (PLAs) fitted at every arm with pyrene end group have been prepared. Internal dynamics and mobility of the PLA chains in tetrahydrofuran solution at 25 °C, with regard to the number of PLA arms in one macromolecule and the individual arm average degree of polymerization, was followed by fluorescence spectroscopy. Analysis of both static and time‐resolved spectra of the star‐shaped polymers revealed dynamic segmental motion resulting in end‐to‐end cyclization, accompanied by an excimer formation. Probability and rate of the latter reaction increased with increasing number of arms and with decreasing their polymerization degree. Moreover, time‐resolved measurements revealed that for macromolecules containing few arms (2 or 3) the pyrene moieties are located in the interior of the star‐shaped PLAs, whereas in the instance of the higher number of arms (4–6) they are located at the periphery of the star‐shaped PLAs. Thus, increasing the number of arms leads to their stretching away from the center of the star‐shaped PLA macromolecule. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4586–4599, 2005  相似文献   

4.
The bowl‐shaped aluminum alkoxide complexes bearing N2O2 bis(phenolate)‐amine ligands having different side arms as pyridine ( 1 ), dimethyl amine ( 2 ), and diethyl amine ( 3 ) were shown to be highly efficient and well behaved in the homopolymerization and copolymerization of l ‐lactide (LA) and ε‐caprolactone (ε‐CL) at 100 °C. The rates of copolymerization are similar for Complexes 1 – 3 where nearly full conversions were achieved in 60 h for [LA]:[CL]:[Al] ratio of 50:50:1. The minor adjustment of the side arms of the Catalysts 1 – 3 gave profound differences in the LA/ε‐CL copolymer sequences where tapered, gradient, and highly random structures were obtained in one system, respectively. The chelation of LA to Al metal after ring‐opening process and suitable steric hindrance of the side arms were believed to participate and saturate the aluminum metal centers giving different copolymer structures. The random LA/ε‐CL copolymer structure was confirmed by nuclear magnetic resonance and differential scanning calorimetry analysis. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1635–1644  相似文献   

5.
Two types of three‐arm and four‐arm, star‐shaped poly(D,L ‐lactic acid‐alt‐glycolic acid)‐b‐poly(L ‐lactic acid) (D,L ‐PLGA50‐b‐PLLA) were successfully synthesized via the sequential ring‐opening polymerization of D,L ‐3‐methylglycolide (MG) and L ‐lactide (L ‐LA) with a multifunctional initiator, such as trimethylolpropane and pentaerythritol, and stannous octoate (SnOct2) as a catalyst. Star‐shaped, hydroxy‐terminated poly(D,L ‐lactic acid‐alt‐glycolic acid) (D,L ‐PLGA50) obtained from the polymerization of MG was used as a macroinitiator to initiate the block polymerization of L ‐LA with the SnOct2 catalyst in bulk at 130 °C. For the polymerization of L ‐LA with the three‐arm, star‐shaped D,L ‐PLGA50 macroinitiator (number‐average molecular weight = 6800) and the SnOct2 catalyst, the molecular weight of the resulting D,L ‐PLGA50‐b‐PLLA polymer linearly increased from 12,600 to 27,400 with the increasing molar ratio (1:1 to 3:1) of L ‐LA to MG, and the molecular weight distribution was rather narrow (weight‐average molecular weight/number‐average molecular weight = 1.09–1.15). The 1H NMR spectrum of the D,L ‐PLGA50‐b‐PLLA block copolymer showed that the molecular weight and unit composition of the block copolymer were controlled by the molar ratio of L ‐LA to the macroinitiator. The 13C NMR spectrum of the block copolymer clearly showed its diblock structures, that is, D,L ‐PLGA50 as the first block and poly(L ‐lactic acid) as the second block. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 409–415, 2002  相似文献   

6.
The combination of living/controlled cationic cyclopolymerization and crosslinking polymerization of bifunctional vinyl ethers (divinyl ethers) was applied to the synthesis of core‐crosslinked star‐shaped polymers with rigid cyclized arms. Cyclopolymerization of 4,4‐bis(vinyloxymethyl)cyclohexene ( 1 ), a divinyl ether with a cyclohexene group, was investigated with the hydrogen chloride/zinc chloride (HCl/ZnCl2) initiating system in toluene at 0 °C. The reaction proceeded quantitatively to give soluble poly( 1 )s in organic solvents. The content of the unreacted vinyl groups in the produced polymers was less than ~3 mol%, and therefore, the degree of cyclization of the polymers was determined to be ~97%. The number‐average molecular weight (Mn) of the polymers increased in direct proportion to monomer conversion and further increased on addition of a fresh monomer feed to the almost completely polymerized reaction mixture, indicating that living cyclopolymerization of 1 occurred. The chain linking reactions among the formed living cyclopolymers with 1,4‐bis(vinyloxy)cyclohexane ( 3 ) as a crosslinker in toluene at 0 °C produced core‐crosslinked star‐shaped cyclopoly( 1 )s [star‐poly( 1 )s] in high yield (100%). Dihydroxylation of the cyclohexene double bonds of star‐poly( 1 ) gave hydrophilic water‐soluble star‐shaped polymers with rigid arm structure [star‐poly( 1 )‐OH] with thermo‐responsive function in water. Tgs of star‐poly( 1 ) and star‐poly( 1 )‐OH were 135 °C and 216 °C, respectively; these values are very high as vinyl ether‐based star‐shaped polymers. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1094–1102  相似文献   

7.
Star‐shaped polybutadiene stars were synthesized by a convergent coupling of polybutadienyllithium with 4‐(chlorodimethylsilyl)styrene (CDMSS). CDMSS was added slowly and continuously to the living anionic chains until a stoichiometric equivalent was reached. Gel permeation chromatography‐multi‐angle laser light scattering (GPC‐MALLS) was used to determine the molecular weights and molecular weight distribution of the polybutadiene polymers. The number of arms incorporated into the star depended on the molecular weight of the initial chains and the rate of addition of the CDMSS. Low molecular weight polybutadiene arms (Mn = 640 g/mol) resulted in polybutadiene star polymers with an average of 12.6 arms, while higher molecular weight polybutadiene arms (Mn = 16,000 g/mol) resulted in polybutadiene star polymers with an average of 5.3 arms. The polybutadiene star polymers exhibited high 1,4‐polybutadiene microstructure (88.3–93.1%), and narrow molecular weight distributions (Mw/Mn = 1.11–1.20). Polybutadiene stars were subsequently hydrogenated by two methods, heterogeneous catalysis (catalytic hydrogenation using Pd/CaCO3) or reaction with p‐toluenesulfonhydrazide (TSH), to transform the polybutadiene stars into polyethylene stars. The hydrogenation of the polybutadiene stars was found to be close to quantitative by 1H NMR and FTIR spectroscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 828–836, 2006  相似文献   

8.
A series of novel four‐arm A2B2 and A2BC and five‐arm A2B2C miktoarm star polymers, where A is poly(dimethylsiloxane) (PDMS), B is polystyrene (PS), and C is polyisoprene (PI), were successfully synthesized by the combination of chlorosilane and benzyl chloride linking chemistry. This new and general methodology is based on the linking reaction of in‐chain benzyl chloride functionalized poly(dimethylsiloxane) (icBnCl–PDMS) with the in‐chain diphenylalkyl (icD) living centers of PS‐DLi‐PS, PS‐DLi‐PI, or (PS)2‐DLi‐PI. icBnCl–PDMS was synthesized by the selective reaction of lithium PDMS enolate (PDMSOLi) with the chlorosilane groups of dichloro[2‐(chloromethylphenyl)ethyl]methylsilane, leaving the benzyl chloride group intact. The icD living polymers, characterized by the low basicity of DLi to avoid side reactions with PDMS, were prepared by the reaction of the corresponding living chains with the appropriate chloro/bromo derivatives of diphenylethylene, followed by a reaction with BuLi or the living polymer. The combined molecular characterization results of size exclusion chromatography, 1H NMR, and right‐angle laser light scattering revealed a high degree of structural and compositional homogeneity in all miktoarm stars prepared. The power of this general approach was demonstrated by the synthesis of a morphologically interesting complex miktoarm star polymer composed of two triblock terpolymer (PS‐b‐PI‐b‐PDMS) and two diblock copolymer (PS‐b‐PI) arms. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6587–6599, 2006  相似文献   

9.
Various types of fluorine‐containing star‐shaped poly(vinyl ether)s were successfully synthesized by crosslinking reactions of living polymers based on living cationic polymerization. Star polymers with fluorinated arm chains were prepared by the reaction between a divinyl ether and living poly(vinyl ether)s with fluorine groups (C4F9, C6F13, and C8F17) at the side chain using cationogen/Et1.5AlCl1.5 in a fluorinated solvent (dichloropentafluoropropanes), giving star‐shaped fluorinated polymers in high yields with a relatively narrow molecular weight distribution. The concentration of living polymers for the crosslinking reaction and the molar feed ratio of a bifunctional vinyl ether to living polymers affected the yield and molecular weight of the star polymers. Star polymers with block arms were prepared by a linking reaction of living block copolymers of a fluorinated segment and a nonfluorinated segment. Heteroarm star‐shaped polymers containing two‐ or three‐arm species were synthesized using a mixture of different living polymer species for the reaction with a bifunctional vinyl ether. The obtained polymers underwent temperature‐induced solubility transitions in various organic solvents, and their concentrated solutions underwent sol–gel transitions, based on the solubility transition of a thermoresponsive fluorinated segment. Furthermore, a slight amount of fluorine groups were shown to be effective for physical gelation when those were located at the arm ends of a star polymer. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
A monomode microwave reactor was used for the synthesis of designed star‐shaped polymers, which were based on dipentaerythritol with six crystallizable arms of poly(ε‐caprolactone)‐b‐poly(L ‐lactide) (PCL‐b‐PLLA) copolymer via a two‐step ring‐opening polymerization (ROP). The effects of irradiation conditions on the molecular weight were studied. Microwave heating accelerated the ROP of CL and LLA, compared with the conventional heating method. The resultant hexa‐armed polymers were fully characterized by means of FTIR, 1H NMR spectrum, and GPC. The investigation of thermal properties and crystalline behaviors indicated that the crystalline behaviors of polymers were largely depended on the macromolecular architecture and the length of the block chains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

11.
Structural features of star-shaped polyprotostyrene and polydeuterostyrene containing fullerene C60 as a branching center have been studied by small-angle neutron scattering in benzene solutions. The results are compared with the corresponding characteristics of linear PSs, the molecular mass of which is equal to the molecular mass of one star arm in star-shaped macromolecules. The molecular masses of star-shaped polymers are estimated, and their branching center is shown to be hexafunctional. At relatively low concentrations of starshaped polymers in solutions, one can observe excluded volume effects, which are related by the presence of regions with higher densities at the center of a macromolecule. Using the Fourier transform of the scattering cross section, three-dimensional correlation functions are obtained, and the regular structure of stars is proved. Conclusions about the local correlations of units within one star arm and averaged correlations between units of neighboring arms within a given star are derived. An analysis of three-dimensional correlations shows that the centers of mass of all star arms are directed along orthogonal axes passing through the C60 branching center of a star-shaped macromolecule.  相似文献   

12.
Star‐branched polystyrenes, with polydispersity indices of 1.15–1.56 and 4–644 equal arms, were synthesized by the reaction of 2,2,6,6‐tetramethylpiperidin‐1‐yloxy (TEMPO)‐capped polystyrene (PS‐T) with divinylbenzene (DVB). The characterization of PS‐T and the final star polymers was carried out by size exclusion chromatography, low‐angle laser light scattering, and viscometry. The degree of branching of the star polymers depended on the DVB/PS‐T ratio and the PS‐T molecular weight. An asymmetric (or miktoarm) star homopolymer of the PSnPS′n type was made by the reaction of the PSn symmetric star, which had n TEMPO molecules on its nucleus and consisted of a multifunctional initiator, with extra styrene. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 320–325, 2001  相似文献   

13.
Both star‐shaped poly(ε‐caprolactone) (PCL) having 4 arms (4sPCL) and 6 arms (6sPCL) and linear PCL having 1 arm (LPCL) and 2 arms (2LPCL) were synthesized and then investigated for inclusion complexation with α‐cyclodextrin (α‐CD). The supramolecular inclusion complexes (ICs) were in detail characterized by 1H NMR, differential scanning calorimetry, thermogravimetric analysis, wide angle X‐ray diffraction, solid‐state carbon nuclear magnetic resonance spectroscopy using cross‐polarization and magic‐angle spinning, and Fourier transform infrared, respectively. The stoichiometry (CL:CD, mol:mol) of all ICs increased with the increasing branch arm of PCL polymers, and it was in the order of α‐CD‐6sPCL1 ICs > α‐CD‐4sPCL ICs > α‐CD‐2LPCL ICs > α‐CD‐LPCL ICs. All analyses indicated that the branch arms of star‐shaped PCL polymers were included into the hydrophobic α‐CD cavities and their original crystalline properties were completely suppressed. Moreover, the ICs of star‐shaped PCL with α‐CD had a channel‐type crystalline structure similar to that formed between the linear PCL and α‐CD. Furthermore, the thermal stability of the free PCL polymers probably controlled that of the guest polymers included in the ICs. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4721–4730, 2005  相似文献   

14.
The miktoarm star‐shaped poly(lactic acid) (PLA) copolymer, (PLLA)2‐core‐(PDLA)2, was synthesized via stepwise ring‐opening polymerization of lactide with dibromoneopentyl glycol as the starting material. 1H NMR and FTIR spectroscopy proved the feasibility of synthetic route and the successful preparation of star‐shaped PLA copolymers. The results of FTIR spectroscopy and XRD showed that the stereocomplex structure of the copolymer could be more perfect after solvent dissolution treatment. Effect of chain architectures on crystallization was investigated by studying the nonisothermal and isothermal crystallization of the miktoarm star‐shaped PLA copolymer and other stereocomplexes. Nonisothermal differential scanning calorimetry and polarizing optical microscopy tests indicated that (PLLA)2‐core‐(PDLA)2 exhibited the fastest formation of a stereocomplex in a dynamic test due to its special structure. In isothermal crystallization tests, the copolymer exhibited the fast crystal growth rate and the most perfect crystal morphology. The results reveal that the unique molecular structure has an important influence on the crystallization of the miktoarm star‐shaped PLA copolymer. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 814–826  相似文献   

15.
Two more or less ethoxylated pentaerythritols were reacted with dibutyltin dimethoxide and yielded spirocyclic tin alkoxides that were soluble in hot toluene or in chlorobenzene, chloroform, and 1,1,2,2‐tetrachloroethane at room temperature. These solutions were used in situ as initiators for the ring‐expansion polymerization of ?‐caprolactone or β‐D,L ‐butyrolactone. The spirocyclic polylactones were reacted with various carboxylic acid chlorides and yielded four‐armed stars with the elimination of Bu2SnCl2. By variation of the acid chlorides, star arms with chloroacetate, 4‐bromobenzoate, 4‐nitrobenzoate, cinnamate, stearate, or methacrylate end groups were obtained. With 4‐chlorothiophenyl esters of N‐protected amino acids, N‐protected aminoacyl end groups were introduced. A complete functionalization of all star arms was not achieved in all cases, and structure–property relationships were examined. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1047–1057, 2002  相似文献   

16.
Poly(N‐vinylcaprolactam) (PNVCL) star‐shaped polymers with four arms and carboxyl end groups were synthesized by reversible addition–fragmentation chain transfer (RAFT) polymerization of N‐vinylcaprolactam (NVCL) employing a tetrafunctional trithiocarbonate as an R‐RAFT agent. The resulting star polymers were characterized using 1H NMR, FT‐IR, gel permeation chromatography (GPC), and UV–vis. Molecular weight of star polymers were analyzed by GPC and UV–vis being observed that the values obtained were very similar. Furthermore, the thermosensitive behavior of the star polymers was studied in aqueous solution by measuring the lower critical solution temperature by dynamic light scattering. Star‐shaped PNVCL were chain extended with ethyl‐hexyl acrylate (EHA) to yield star PNVCL‐b‐PEHA copolymers with an EHA molar content between 4% and 6% proving the living character of the star‐shaped macroCTA. These star block copolymers form aggregates in aqueous solutions with a hydrodynamic diameter ranged from 170 to 225 nm. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2156–2165  相似文献   

17.
Core crosslinked star (CCS)‐polymers with water‐soluble arms composed of poly(N‐hydroxyethylacrylamide) (PHEAA) are described. N‐Hydroxyethylacrylamide was polymerized by the atom transfer radical polymerization consisting of ethyl 2‐chloropropionate, copper(I) chloride (CuCl), and tris[2‐(dimethylamino)ethyl]amine in an ethanol/water mixed solvent at 20 °C. The obtained PHEAA‐arms were subsequently coupled using N,N′‐methylenebisacrylamide as the crosslinking agent and sodium L ‐ascorbic acid (AscNa) as the reaction activator. A total of 17 representative coupling reactions with diverse conditions are discussed together with the characterizations of the products mainly by size exclusion chromatograph equipped with the multiangle laser light scattering detector (SEC‐MALS). Consequently, the coupling reactions provided CCS‐polymers with PHEAA‐arms (CCS‐PHEAAs) having weight averaged‐molecular weights determined by SEC‐MALS (Mw,MALS) ranging from 63.8 kg mol?1 to 832 kg mol?1, which corresponded to the average arm‐number (Narm) ranging from 4.1 to 42, respectively. CCS‐PHEAA with the Mw,MALS of 250 kg mol?1 was isolated and characterized by small angle X‐ray scattering measurements in 0.05 M NaNO3 aq. at 25 °C, which was shown to possess a star‐shaped structure and exist as single molecules with a radius of gyration at the infinite dilution condition (<Rg2>z,01/2) of 74 ± 4 Å. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

18.
Well‐defined hetero eight‐shaped copolymers composed of polystyrene (PS) and poly(ε‐caprolactone) (PCL) with controlled molecular weight and narrow molecular weight distribution were successfully synthesized by the combination of ring‐opening polymerization, ATRP, and “click” reaction. The synthetic procedure involves three steps: (1) preparation of a tetrafunctional PS and PCL star copolymer with two PS and two PCL arms using the tetrafunctional initiator bearing two hydroxyl groups and two bromo groups; (2) synthesis of tetrafunctional star copolymer, (α‐acetylene‐PCL)2(ω‐azido‐PS)2, by the transition of terminal hydroxyl and bromo groups to acetylene and azido groups through the reaction with 4‐propargyloxybutanedioyl chloride and NaN3 respectively; (3) intramolecular cyclization reaction to produce the hetero eight‐shaped copolymers using “click” chemistry under high dilution. The 1H NMR, FTIR, and gel permeation chromatography techniques were applied to characterize the chemical structures of the resulted intermediates and the target polymers. Their thermal behavior was investigated by DSC, and their crystallization behaviors of PCL were studied by polarized optical microscopy. The decrease in chain mobility of the eight‐shaped copolymers restricts the crystallization of PCL and the crystallization rate of PCL is slower in comparison with their corresponding star precursors. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6496–6508, 2008  相似文献   

19.
A spirocyclic tin initiator was synthesized from pentaerythritol ethoxylate and dibutyltin oxide and used to polymerize L ‐lactide with dichloromethane, chloroform, toluene, and chlorobenzene as solvents. The reactions were performed at different temperatures and it is concluded that neither the temperature nor the solvent affects the molecular weight or the molecular weight distribution of the star‐shaped polymers. The reaction rate was significantly increased by raising the reaction temperature or choosing a solvent with a low dielectric constant. All polymers showed a molecular‐weight distribution below 1.19 and a molecular‐weight determined by the initial monomer to initiator concentration ([M]0/[I]). No induction period was seen for the polymerizations. They were all first order in initiator and the degree of aggregation in toluene at 110 °C was found to be 4/5. The glass transition temperature and the melting temperature of the star‐shaped polymers increase with increasing arm length. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 596–605, 2006  相似文献   

20.
The synthesis and characterization of novel first‐ and second‐generation true dendritic reversible addition–fragmentation chain transfer (RAFT) agents carrying 6 or 12 pendant 3‐benzylsulfanylthiocarbonylsulfanylpropionic acid RAFT end groups with Z‐group architecture based on 1,1,1‐hydroxyphenyl ethane and trimethylolpropane cores are described in detail. The multifunctional dendritic RAFT agents have been used to prepare star polymers of poly(butyl acrylate) (PBA) and polystyrene (PS) of narrow polydispersities (1.4 < polydispersity index < 1.1 for PBA and 1.5 < polydispersity index < 1.3 for PS) via bulk free‐radical polymerization at 60 °C. The novel dendrimer‐based multifunctional RAFT agents effect an efficient living polymerization process, as evidenced by the linear evolution of the number‐average molecular weight (Mn) with the monomer–polymer conversion, yielding star polymers with molecular weights of up to Mn = 160,000 g mol?1 for PBA (based on a linear PBA calibration) and up to Mn = 70,000 g mol?1 for PS (based on a linear PS calibration). A structural change in the chemical nature of the dendritic core (i.e., 1,1,1‐hydroxyphenyl ethane vs trimethylolpropane) has no influence on the observed molecular weight distributions. The star‐shaped structure of the generated polymers has been confirmed through the cleavage of the pendant arms off the core of the star‐shaped polymeric materials. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5877–5890, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号