首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The cyclocondensation of 5‐hydroxy‐pyrido[2,3‐d]pyrimidines 1 with malonates gives pyrano[2′,3′:4,5]‐pyrido[2,3‐d]pyrimidines 2 . Nitration of 1 and reduction with zinc in the presence of carboxylic acids/anhydrides gave 2‐alkyloxazolo[5′,4′:4,5]pyrido[2,3‐d]pyrimidines 4 , which were ring‐opened to 6‐aminopyrido[2,3‐d]pyrimidines 5, 6 and 7 . Cyclization of 6‐aminopyrido[2,3‐d]pyrimidines 6 with benzoylchlorides 8 gave 2‐aryloxazolo[5′,4′:4,5]pyrido[2,3‐d]pyrimidines 9 . Reaction conditions for the cyclization have been studied by differential scanning calorimetry (DSC).  相似文献   

2.
Starting with 2-substituted quinoline-3,4-dicarboxylic acids, a series of substituted 1,2,3,4-tetrahydropyrimido[4,5-c]quinolinone-3-thiones were obtained. The latter compounds were converted to the three novel polyazasteroid series: 1,2,4-Triazolo[3′,4′:2,3]pyrimido[4,5-c]-quinolin-11(12H)ones, imidazo[2′,1′:2,3]pyrimido[4,5c]quinolin-11(12H)ones and 2,3-dihydroimidazo[2′,1′:2,3]pyrimido[4,5-c]quinolin-11(12H)ones. The intermediate 3-hydrazino-1,2-dihydropyrimido[4,5-c]quinolinones and nitrous acid gave the 3-azido derivatives rather than the tetrazolo compounds.  相似文献   

3.
The ceric ammonium nitrate‐catalyzed synthesis of (E)‐5‐amino‐N‐(3‐methyl‐5‐styrylisoxazol‐4‐yl)‐2‐arylchromeno[4,3,2‐de][1,6]napthyridin‐4‐carboxamides 5 was simply achieved upon the one‐pot four‐component reaction of isoxazolyl cyanoacetamide 1 with malononitrile 2 , 2‐hydroxy acetophenone 3 , and aromatic aldehydes 4 in ethanol. Compounds 5 on heating with acetic anhydride underwent tandem N‐acetylation and cyclocondensation involving intramolecular cyclization to afford the title compounds (E)‐11‐methyl‐12‐(3‐methyl‐5‐styrylisoxazol‐4‐yl)‐2‐arylchromeno[4,3,2‐de][1,6]napthyridin‐13(12H)‐ones 6 in good yields. The chemical structures have been confirmed by analytical and spectral analyses.  相似文献   

4.
Reaction of 5,6‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinoline‐1,2‐dione ( 1 ) with two equivalents of some 6‐aminouracils (or 6‐amino‐2‐thiouracil) generates spirocyclic tetrahydrobenzo[if]quinolizines ( 7 ). The one‐pot, three‐component reaction of amido ketone ( 1 ) with 6‐aminouracil (or 6‐amino‐2‐thiouracil) and a cyclic six‐membered 1,3‐diketone produces spirocyclic tetrahydropyrrolo[3,2,1‐ij]quinolinones ( 15 ).  相似文献   

5.
Starting from pyrimido[4,5‐e][1,3,4]oxadiazines ( 3a , 3b , 3c ) , a synthetic pathway to [1,2,4]triazolo[4′,3′:1,2]pyrimido[4,5‐e][1,3,4]oxadiazines ( 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i ) is described. The reaction of pyrimido[4,5‐e][1,3,4]oxadiazines ( 3a , 3b , 3c ) with hydrazine hydrate afforded the corresponding hydrazino derivatives ( 4a , 4b , 4c ) . Further treatment of these compounds with different orthoesters in acetic acid gave the corresponding [1,2,4]triazolo[4′,3′:1,2]pyrimido[4,5‐e][1,3,4]oxadiazines ( 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i ) . Compound ( 3a ) and ( 5b ) , as examples, were tested on different cancer cell lines including HeLa, MCF‐7, and HepG2. Malignant cells were cultured in DMEM medium and incubated with different concentrations of the titled compounds. Cell viability was quantitated by MTT assay. J. Heterocyclic Chem., (2010).  相似文献   

6.
A series of pyrimido[4,5‐b]quinoline and indeno[2′,1′:5,6]pyrido[2,3‐d]pyrimidine derivatives were synthesized via the three‐component reaction of an aldehyde, 6‐aminopyrimidine‐2,4‐dione and 5,5‐dimethyl‐1,3‐cyclohexanedione or 1,3‐indanedione in ionic liquid 1‐n‐butyl‐3‐methylimidazolium bromide ([bmim]Br). This protocol has the advantages of easier work‐up, milder reaction conditions, high yields and an environmentally benign procedure compared with other methods.  相似文献   

7.
The structures of new oxaindane spiropyrans derived from 7‐hydroxy‐3′,3′‐dimethyl‐3′H‐spiro[chromene‐2,1′‐isobenzofuran]‐8‐carbaldehyde (SP1), namely N‐benzyl‐2‐[(7‐hydroxy‐3′,3′‐dimethyl‐3′H‐spiro[chromene‐2,1′‐isobenzofuran]‐8‐yl)methylidene]hydrazinecarbothioamide, C27H25N3O3S, (I), at 120 (2) K, and N′‐[(7‐hydroxy‐3′,3′‐dimethyl‐3′H‐spiro[chromene‐2,1′‐isobenzofuran]‐8‐yl)methylidene]‐4‐methylbenzohydrazide acetone monosolvate, C27H24N2O4·C3H6O, (II), at 100 (2) K, are reported. The photochromically active Cspiro—O bond length in (I) is close to that in the parent compound (SP1), and in (II) it is shorter. In (I), centrosymmetric pairs of molecules are bound by two equivalent N—H...S hydrogen bonds, forming an eight‐membered ring with two donors and two acceptors.  相似文献   

8.
3‐Amino‐4‐aryl‐5‐ethoxycarbonyl‐6‐methylthieno[2,3‐b]pyridine‐2‐carboxamides 3a‐c were prepared from ethyl 4‐aryl‐3‐cyano‐6‐methyl‐2‐thioxo‐1,2‐dihydropyridine‐5‐carbonylates 1a‐c and reacted with some carbonyl compounds to give tetrahydropyridothienopyrimidine derivatives 6a‐c, 7a‐c and 8a‐c , respectively. Treatment of compound 3c with chloroacetyl chloride led to the formation of a next key compound, ethyl 2‐chloromethyl‐4‐oxo‐3,4‐dihydropyrido[3′,2′:4,5]thieno[3,2‐d]pyrimidine‐8‐carboxylate 9 . Also, 3‐amino‐2‐benzimidazolylthieno[2,3‐b]pyridine‐5‐carboxylate 5 and 2‐(3′‐aminothieno [2,3‐b]pyridin‐2′‐yl)‐4‐oxo‐3,4‐dihydropyrido[3′,2′:4,5]thieno[3,2‐d]pyrimidine‐8‐carboxylate 17 were prepared from 1c. The compounds 5, 9 and 17 were used as good synthons for other pyridothienopyrimidines and pyridothienopyrimidobenzimidazoles as well as for related fused polyheterocyclic systems.  相似文献   

9.
Imidazo[2,1‐b][2H‐1,3,4]thiadiazines were prepared by cyclization of 2‐amino‐5‐(4‐chlorophenyl)‐6H‐1,3,4‐thiadiazine with α‐haloketones. 1,2,4‐Triazolo[3,4‐b][2H‐1,3,4]thiadiazines were prepared by cyclization of 4‐amino‐5‐sulfanyl‐l,2,4‐triazoles with phenacyl bromides.  相似文献   

10.
Diethyl 2‐[(ethoxythioxomethyl)amino]‐4,5,6,7‐tetrahydrothieno[2,3‐c]‐pyridine‐3,6‐dicarboxylate 2 , prepared from diethyl 2‐isothiocyanato‐4,5,6,7‐tetrahydrothieno[2,3‐c]pyridine‐3,6‐dicarboxylate 1 by boiling in anhydrous ethanol, was converted into pyrido[4′,3′:4,5]thieno[2,3‐d]pyrimidine derivatives 3, 4 by treatment with hydrazine hydrate. The tetracyclic systems imidazo[1,2‐a]pyrido‐[4′,3′:4,5]thieno[2,3‐d]pyrimidine 9 and pyrido[4′,3′:4,5]thieno[2,3‐d][1,3]thiazolo‐[3,2‐a]pyrimidine 10 were synthesized by the reaction of 2 with 1,2‐diaminoethane and aminoethanethiol, respectively. The hydrazino derivative 4 underwent cyclization reactions with orthoesters and nitrous acid to give the corresponding pyrido[4′,3′:4,5]thieno[2,3‐d][1,2,4]triazolo[1,5‐a]pyrimidines 5, 6 and pyrido[4′,3′:4,5]thieno[3,2‐e][1,2,3,4]tetrazolo[1,5‐a]pyrimidine 8 , respectively. Moreover, reactions of 3 with cyanogen bromide, N‐carbethoxyhydrazine, carbon disulfide, and ethylchloroformate resulted in the formation of the new pyrido[4′,3′:4,5]thieno[2,3‐d][1,3,4]thiadiazolo[3,2‐a]pyrimidine derivatives 12–15 . © 2002 Wiley Periodicals, Inc. Heteroatom Chem 13:280–286, 2002; Published online in Wiley Interscience (www.interscience.wiley.com). DOI 10.1002/hc.10030  相似文献   

11.
Several derivatives of the novel benzo[b]pyrazolo[5′,1′:2,3]pyrimido[4,5‐e][1,4]thiazine ring system have been synthesized through the one‐pot cyclocondensation of 6‐bromo‐7‐chloro‐2‐(ethylthio)‐5‐methylpyrazolo[1,5‐a]pyrimidine‐3‐carbonitrile ( 4 ) with o‐aminothiophenol in the presence of Et3N in CH3CN. The true regio isomer ( 5 ) was also determined by X‐ray crystallographic analysis. The N‐alkylation of the synthesized compound ( 5 ) was also accomplished.  相似文献   

12.
13.
14.
Convenient syntheses of 3‐substituted ethyl 4‐oxo‐2‐thioxo‐1,2,3,4,5,6,7,8‐octahydropyrid[4′,3′:4,5]thieno[2,3‐d]pyrimidine‐7‐carboxylates 3a, b, 6, 11–13 , ethyl 3‐methyl‐5‐oxo‐2,3,6,9‐tetrahydro‐5 H‐pyrido[4′,3′:4,5]thieno[2,3‐d][1,3]thiazolo[3,2‐a]pyrimidine‐8‐7H‐carboxylate ( 4 ), and ethyl 2‐methyl‐5‐oxo‐2,3,6,9‐tetrahydro‐5H‐pyrido[4′,3′:4,5]thieno[2, 3‐d][1,3]thiazolo[3,2‐a]pyrimidine‐8[7H]carboxylate ( 8 ) from diethyl 2‐isothiocyanato‐4,5,6,7‐tetrahythieno[2,3‐c]pyridine‐3,6‐dicarboxylate ( 1 ) are reported. © 2003 Wiley Periodicals, Inc. Heteroatom Chem 14:201–207, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.10131  相似文献   

15.
The synthesis of two previously unknown novel polycyclic heterocyclic ring systems via photocyclization is described. The structural assignment of the isomeric ring systems, 4 and 5 , was achieved by the total assignment of their 1H and 13C nmr spectra by the concerted usage of two-dimensional nmr methods.  相似文献   

16.
Novel tricyclic 1,4‐diazepine derivatives – pyrido[3′,2′:4,5]thieno[3,2‐e ][1,4]diazepin‐2‐ones – have been synthesized. Azetidin‐2‐one moiety has been incorporated into the 1,4‐diazepine scaffold by [2 + 2]cycloaddition of functionalized ketenes to imine C═N bond, and several tetracyclic azetodiazepines which can be considered as potential compounds of biological interest have been prepared. Stereoselectivity of the cycloaddition was proved by NMR and X‐ray analysis data.  相似文献   

17.
18.
5‐Bromo‐2‐chloro‐4‐methyl‐6‐(1‐methylhydrazino)pyrimidine is readily obtained from the recently reported 5‐bromo‐2,4‐dichloro‐6‐methylpyrimidine by treatment with methylhydrazine in chloroform. Treatment of this compound with carbon disulfide and several alkyl halides gave an intermediate which was successfully converted to its corresponding 3‐(alkylsulfanyl)‐7‐chloro‐1,5‐dimethyl‐1H‐pyrimido[4,5‐e][1,3,4]thiadiazine derivatives in basic acetonitrile. The latter compounds were reacted with secondary amines in boiling ethanol to afford the related 7‐amino derivatives.  相似文献   

19.
20.
Thiazole 1 , when reacted with chloroacetyl chloride, afforded N‐(5‐acetyl‐4‐methylthiazol‐2‐yl) chloroacetamide 2 . It has been found that compound 2 reacted with α‐cyanocinnamonitrile derivatives 6a–c to afford reaction products 8a–c . Also, compound 2 coupled smoothly with benzenediazonium chloride afforded the phenylhydrazone 14 . Coupling of the sulfonium bromide 17 with diazotized aromatic amines or N‐nitrosoacetanilides afforded the arylhydrazones 20a,b . Treatment of 16 with 2‐cyanoethanethioamide afforded [4‐(2‐amino‐4‐methylthiazol‐5‐yl) thiazol‐2‐yl] acetonitrile 22 . © 2000 John Wiley & Sons, Inc. Heteroatom Chem 11:362–369, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号