首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A synthetic route is developed for the preparation of an AB‐type of monomer carrying an epoxy and a thiol group. Base‐catalyzed thiol‐epoxy polymerization of this monomer gave rise to poly(β‐hydroxythio‐ether)s. A systematic variation in the reaction conditions suggested that tetrabutyl ammonium fluoride, lithium hydroxide, and 1,8‐diazabicycloundecene (DBU) were good polymerization catalysts. Triethylamine, in contrast, required higher temperatures and excess amounts to yield polymers. THF and water could be used as polymerization mediums. However, the best results were obtained in bulk conditions. This required the use of a mechanical stirrer due to the high viscosity of the polymerization mixture. The polymers obtained from the AB monomer route exhibited significantly higher molecular weights (Mw = 47,700, Mn = 23,200 g/mol) than the materials prepared from an AA/BB type of the monomer system (Mw = 10,000, Mn = 5400 g/mol). The prepared reactive polymers could be transformed into a fluorescent or a cationic structure through postpolymerization modification of the reactive hydroxyl sites present along the polymer backbone. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2040–2046  相似文献   

2.
The ring‐opening metathesis polymerization (ROMP) of cis‐cyanocyclooct‐4‐ene initiated by ruthenium‐based catalysts of the first, second, and third generation was studied. For the polymerization with the second generation Grubbs catalyst [RuCl2(?CHPh)(H2IMes)(PCy3)] (H2IMes = N,N′‐bis(mesityl)‐4,5‐dihydroimidazol‐2‐ylidene), the critical monomer concentration at which polymerization occurs was determined, and variation of monomer to catalyst ratios was performed. For this catalyst, ROMP of cis‐cyanocyclooct‐4‐ene did not show the features of a living polymerization as Mn did not linearly increase with increasing monomer conversion. As a consequence of slow initiation rates and intramolecular polymer degradation, molar masses passed through a maximum during the course of the polymerization. With third generation ruthenium catalysts (which contain 3‐bromo or 2‐methylpyridine ligands), polymerization proceeded rapidly, and degradation reactions could not be observed. Contrary to ruthenium‐based catalysts of the second and third generation, a catalyst of the first generation was not able to polymerize cis‐cyanocyclooct‐4‐ene. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
Microwave‐assisted ring‐opening polymerization (MROP) of trimethylene carbonate in the presence of 1‐n‐butyl‐3‐methylimidazolium tetrafluoroborate ([bmim]BF4) ionic liquid was investigated. In the presence of 5 wt % [bmim]BF4, poly (trimethylene carbonate) (PTMC) with a number‐average molar mass (Mn) of 36,400 g/mol was obtained at 5 W for only 60 min. The Mn of PTMC synthesized in the presence of [bmim]BF4 was much higher than that produced in bulk at the same reaction time. In addition, compared with those produced by conventional heating, the Mn of PTMC and monomer conversion by MROP with or without [bmim]BF4 were both higher. Thermal properties of the resulting PTMC were characterized by differential scanning calorimetry. Under microwave irradiation in the presence of ionic liquid, the polymerization could be carried out efficiently and effectively. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5857–5863, 2007  相似文献   

4.
A novel catalyst composed of neodymium (III) isopropoxide [Nd(OiPr)3] and methylaluminoxane (MAO) was examined in isoprene polymerization. The Nd(OiPr)3‐MAO catalyst proved to be highly effective in heptane even at low [Al]/[Nd] ratios (ca. 30) to give polyisoprene that possessed high cis‐1,4 stereoregularity (> ca. 90%), a high number‐average molecular weight (Mn ~105), and relatively narrow molecular weight distributions (Mw/Mn = 1.9–2.8). The catalyst activity increased with an increasing [Al]/[Nd] ratio from 10 to 80 as well as temperature of aging and polymerization from 0 to 60 °C. The polymerization proceeded in the first order with respect to the monomer concentration. Aliphatic solvents (heptane and cyclohexane) achieved a higher yield and Mn of polymer than toluene as a solvent. The Mw/Mn ratio remained around 2.0, and the gel permeation chromatographic curve was always unimodal, indicating that this system is homogeneous and involves a single active site. The microstructure of polyisoprene was determined by IR, 1H NMR, and 13C NMR. The cis‐1,4 contents of the final polymers stayed in the range of 90–92%, regardless of reaction conditions, indicating the high stability of stereospecificity of the catalyst. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1838–1844, 2002  相似文献   

5.
Controlled cationic polymerization of trans‐1‐methoxy‐1,3‐butadiene was achieved through the design of appropriate initiating systems, yielding soluble polymers with controllable molecular weights. The combined use of SnCl4 or GaCl3 as a Lewis acid catalyst and a weak Lewis base in conjunction with HCl as a protonogen resulted in efficient and controlled polymerization. The Mn values of the product polymers increased linearly along the theoretical line, which indicates that intermolecular crosslinking reactions negligibly occurred. In addition, the polymer microstructure was critically dependent on the weak Lewis base employed. In particular, the use of tetrahydrofuran as an additive resulted in the highest 4,1/4,3‐structure ratio (96/4). Weak Lewis bases also affected the polymerization rates but exhibited unique trends that differed from their effects on the cationic polymerization of alkyl vinyl ethers. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 288–296  相似文献   

6.
The cationic ring‐opening polymerization of a seven‐membered cyclic monothiocarbonate, 1,3‐dioxepan‐2‐thione, produced a soluble polymer through the selective isomerization of thiocarbonyl to a carbonyl group {? [SC(C?O)O(CH2)4]n? }. The molecular weights of the polymer could be controlled by the feed ratio of the monomer to the initiators or the conversion of the monomer during the polymerization, although some termination reactions occurred after the complete consumption of the monomer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1014–1018, 2005  相似文献   

7.
In contrast to BiF3, the other three Bi‐halides catalyzed the ring‐opening polymerization of ε‐caprolactone (ε‐CL) in bulk. A temperature of 140 °C was found to be advantageous for rapid polymerization and optimum molecular weights. At this temperature, the reactivity of the catalysts increases in the order BiCl3 < BiBr3 < BiJ3. Variation of the monomer‐catalyst ratio (M/C) yielded number‐average molecular weights (Mns) up to 80,000 Da (corrected SEC data, 120,000 Da uncorrected), but a proper control of the Mns was not achieved. In addition to CH2? OH endgroups, CH2Cl, CH2Br, and CH2J endgroups were detected, but no evidence for a cationic polymerization mechanism was found. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7483–7490, 2008  相似文献   

8.
Triblock copolymers of poly(styrenesulfonate)‐b‐poly(ethylene glycol)‐b‐poly(styrenesulfonate) with narrow molecular weight distribution (Mw/Mn = 1.28–1.40) and well‐defined structure have been synthesized in aqueous solution at 70 °C via reversible addition‐fragmentation chain transfer polymerization. Poly(ethylene glycol) (PEG) capped with 4‐cyanopentanoic acid dithiobenzoate end groups was used as the macro chain transfer agent (PEG macro‐CTA) for sole monomer sodium 4‐styrenesulfonate. The reaction was controllable and displayed living polymerization characteristics and the triblock copolymer had designed molecular weight. The reaction rate depended strongly on the CTA and initiator concentration ratio [CTA]0/[ACPA]0: an increase in [CTA]0/[ACPA]0 from 1.0 to 5.0 slowed down the polymerization rate and improved the molecular weight distribution with a prolonged induction time. The polymerization proceeded, following first‐order kinetics when [CTA]0/[ACPA]0 = 2.5 and 5.0. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3698–3706, 2007  相似文献   

9.
A series of well‐defined graft copolymers with a polyallene‐based backbone and polystyrene side chains were synthesized by the combination of living coordination polymerization of 6‐methyl‐1,2‐heptadien‐4‐ol and atom transfer radical polymerization (ATRP) of styrene. Poly(alcohol) with polyallene repeating units were prepared via 6‐methyl‐1,2‐heptadien‐4‐ol by living coordination polymerization initiated by [(η3‐allyl)NiOCOCF3]2 firstly, followed by transforming the pendant hydroxyl groups into halogen‐containing ATRP initiation groups. Grafting‐from route was employed in the following step for the synthesis of the well‐defined graft copolymer: polystyrene was grafted to the backbone via ATRP of styrene. The cleaved polystyrene side chains show a narrow molecular weight distribution (Mw/Mn = 1.06). This kind of graft copolymer is the first example of graft copolymer via allene derivative and styrenic monomer. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5509–5517, 2007  相似文献   

10.
The synthesis of 21‐arm methyl methacrylate (MMA) and styrene star polymers is reported. The copper (I)‐mediated living radical polymerization of MMA was carried out with a cyclodextrin‐core‐based initiator with 21 independent discrete initiation sites: heptakis[2,3,6‐tri‐O‐(2‐bromo‐2‐methylpropionyl]‐β‐cyclodextrin. Living polymerization occurred, providing well‐defined 21‐arm star polymers with predicted molecular weights calculated from the initiator concentration and the consumed monomer as well as low polydispersities [e.g., poly(methyl methacrylate) (PMMA), number‐average molecular weight (Mn) = 55,700, polydispersity index (PDI) = 1.07; Mn = 118,000, PDI = 1.06; polystyrene, Mn = 37,100, PDI = 1.15]. Functional methacrylate monomers containing poly(ethylene glycol), a glucose residue, and a tert‐amine group in the side chain were also polymerized in a similar fashion, leading to hydrophilic star polymers, again with good control over the molecular weight and polydispersity (Mn = 15,000, PDI = 1.03; Mn = 36,500, PDI = 1.14; and Mn = 139,000, PDI = 1.09, respectively). When styrene was used as the monomer, it was difficult to obtain well‐defined polystyrene stars at high molecular weights. This was due to the increased occurrence of side reactions such as star–star coupling and thermal (spontaneous) polymerization; however, low‐polydispersity polymers were achieved at relatively low conversions. Furthermore, a star block copolymer consisting of PMMA and poly(butyl methacrylate) was successfully synthesized with a star PMMA as a macroinitiator (Mn = 104,000, PDI = 1.05). © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2206–2214, 2001  相似文献   

11.
In this work, living radical polymerizations of a water‐soluble monomer poly(ethylene glycol) monomethyl ether methacylate (PEGMA) in bulk with low‐toxic iron catalyst system, including iron chloride hexahydrate and triphenylphosphine, were carried out successfully. Effect of reaction temperature and catalyst concentration on the polymerization of PEGMA was investigated. The polymerization kinetics showed the features of “living”/controlled radical polymerization. For example, Mn,GPC values of the resultant polymers increased linearly with monomer conversion. A faster polymerization of PEGMA could be obtained in the presence of a reducing agent Fe(0) wire or ascorbic acid. In the case of Fe(0) wire as the reducing agent, a monomer conversion of 80% was obtained in 80 min of reaction time at 90 °C, yielding a water‐soluble poly(PEGMA) with Mn = 65,500 g mol?1 and Mw/Mn = 1.39. The features of “living”/controlled radical polymerization of PEGMA were verified by analysis of chain‐end and chain‐extension experiments. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
Cationic ring‐opening polymerization of ϵ‐thionocaprolactone was examined. The corresponding polythioester with the number‐average molecular weight (Mn ) of 57,000 was obtained in the polymerization with 1 mol % of BF3 · OEt2 as an initiator in CH2Cl2 at 28 °C for 5 h with quantitative monomer conversion. The Mn of the polymer increased with the solvent polarity and monomer‐to‐initiator ratio. No polymerization took place below −30 °C, and the monomer conversion and Mn of the polymer increased with the temperature in the range of −15 to 28 °C. The increase of initial monomer concentration was effective to improve the monomer conversion and the Mn of the obtained polymer. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4057–4061, 2000  相似文献   

13.
Living cationic polymerization of 2‐adamantyl vinyl ether (2‐vinyloxytricyclo[3.3.1.1]3,7decane; 2‐AdVE) was achieved with the CH3CH(OiBu)OCOCH3/ethylaluminum sesquichloride/ethyl acetate [CH3CH(OiBu)OCOCH3/Et1.5AlCl1.5/CH3COOEt] initiating system in toluene at 0 °C. The number‐average molecular weights (Mn's) of the obtained poly(2‐AdVE)s increased in direct proportion to monomer conversion and produced the polymers with narrow molecular weight distributions (MWDs) (Mw/Mn = ~1.1). When a second monomer feed was added to the almost polymerized reaction mixture, the added monomer was completely consumed and the Mn's of the polymers showed a direct increase against conversion of the added monomer. Block and statistical copolymerization of 2‐AdVE with n‐butyl vinyl ether (CH2?CH? O? CH2 CH2CH2CH3; NBVE) were possible via living process based on the same initiating system to give the corresponding copolymers with narrow MWDs. Grass transition temperature (Tg) and thermal decomposition temperature (Td) of the poly(2‐AdVE) (e.g., Mn = 22,000, Mw/Mn = 1.17) were 178 and 323 °C, respectively. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1629–1637, 2008  相似文献   

14.
Two kinds of Schiff base, N,N′‐dibenzylidene‐1,2‐diaminoethane (NDBE) and N,N′‐disalicylidene‐1,2‐diaminoethane, have been found as efficient organic catalyst for reversible complexation‐mediated radical polymerization (RCMP) of methyl methacrylate (MMA) for the first time. The polymerization results show obvious features of “living”/controlled radical polymerization. Well‐defined and low‐polydispersity polymers (Mw/Mn = 1.20–1.40) are obtained in RCMP of MMA catalyzed by Schiff base at mild temperature (65–80°C). Moreover, Schiff base also exhibits a particularly high reactivity for RCMP of MMA with in situ formed alkyl iodide initiator. The polymer molecular weight and its polydispersity (Mw/Mn is around 1.20) are well controlled even with high monomer conversion. Notably, when the dosage of azo initiator is same as the dosage of iodine, the polymerization could also be realized in the presence of NDBE. The living feature of synthesized polymer is confirmed through the chain extension experiment. In short, Schiff base is a kind of high‐efficient catalyst for RCMP and reverse RCMP of MMA, which can be one of the most powerful and robust techniques for polymer synthesis. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1653–1663  相似文献   

15.
Norbornene polymerization using the commercially available and inexpensive catalyst system, cyclopentadienylzirconium trichloride (CpZrCl3) and isobutyl‐modified methylaluminoxane (MMAO), were carried out over a wide range of polymerization temperatures and monomer concentrations. For the CpZrCl3 catalyst system activated by aluminoxane with a 40 mol % methyl group and a 60 mol % isobutyl group (MMAO40/60), the polymerization temperature and monomer concentration significantly affected the molecular weight (Mn) of the obtained polymer and the catalytic activity. With an increase in the polymerization temperature from 0 to 27 °C, the catalytic activity and Mn increased, but these values dramatically decreased with the increasing polymerization temperature from 27 to 70 °C, meaning that the most suitable temperature was 27 °C. The CpZrCl3/MMAO40/60 ([Al]/[Zr] = 1000) catalyst system with the [NB] of 2.76 mol L?1 at 27 °C showed the highest activity of 145 kg molZr?1 h?1 and molecular weight of 211,000 g mol?1. The polymerization using the CpZrCl3/MMAO40/60 catalyst system proceeds through the vinyl addition mechanism to produce atactic polynorbornene, which was soluble in chloroform, toluene, and 1,2‐dichlorobenzene, but insoluble in methanol. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1185–1191, 2008  相似文献   

16.
AB‐type block copolymers with poly(trimethylene carbonate) [poly(TMC); A] and poly(ethylene oxide) [PEO; B; number‐average molecular weight (Mn) = 5000] blocks [poly(TMC)‐b‐PEO] were synthesized via the ring‐opening polymerization of trimethylene carbonate (TMC) in the presence of monohydroxy PEO with stannous octoate as a catalyst. Mn of the resulting copolymers increased with increasing TMC content in the feed at a constant molar ratio of the monomer to the catalyst (monomer/catalyst = 125). The thermal properties of the AB diblock copolymers were investigated with differential scanning calorimetry. The melting temperature of the PEO blocks was lower than that of the homopolymer, and the crystallinity of the PEO block decreased as the length of the poly(TMC) blocks increased. The glass‐transition temperature of the poly(TMC) blocks was dependent on the diblock copolymer composition upon first heating. The static contact angle decreased sharply with increasing PEO content in the diblock copolymers. Compared with poly(TMC), poly(TMC)‐b‐PEO had a higher Young's modulus and lower elongation at break. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4819–4827, 2005  相似文献   

17.
The synthesis and cationic polymerization of the following bicyclo orthoesters were examined: 4‐ethyl‐2,6,7‐trioxabicyclo[2.2.2]octane, 1,4‐diethyl‐2,6,7‐trioxabicyclo[2.2.2]octane, 4‐ethyl‐1‐phenyl‐2,6,7‐trioxabicyclo[2.2.2]octane, 4‐ethyl‐1‐(4‐methoxyphenyl)‐2,6,7‐trioxabicyclo[2.2.2]octane, and 4‐ethyl‐1‐(4‐nitrophenyl)‐2,6,7‐ trioxabicyclo[2.2.2]octane. All the monomers underwent equilibrium polymerization, which was confirmed by the relationships between the polymerization temperature and monomer conversion. The obtained polymers afforded the original monomers via an acid‐catalyst treatment with a low reagent concentration in CH2Cl2 at 20 °C. The equilibrium monomer concentration was constant, regardless of the initial reagent concentration, in both polymerization and depolymerization. The bicyclo orthoesters with a bulky and electron‐withdrawing substituent showed a larger equilibrium monomer concentration. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3159–3167, 2001  相似文献   

18.
The titanium complexes with one ( 1a , 1b , 1c ) and two ( 2a , 2b ) dialkanolamine ligands were used as initiators in the ring‐opening polymerization (ROP) of ε‐caprolactone. Titanocanes 1a and 1b initiated living ROP of ε‐caprolactone affording polymers whose number‐average molecular weights (Mn) increased in direct proportion to monomer conversion (Mn ≤ 30,000 g mol?1) in agreement with calculated values, and were inversely proportional to initiator concentration, while the molecular weight distribution stayed narrow throughout the polymerization (Mw/Mn ≤ 1.2 up to 80% monomer conversion). 1H‐NMR and MALDI‐TOF‐MS studies of the obtained poly(ε‐caprolactone)s revealed the presence of an isopropoxy group originated from the initiator at the polymer termini, indicating that the polymerization takes place exclusively at the Ti–OiPr bond of the catalyst. The higher molecular weight polymers (Mn ≤ 70,000 g mol?1) with reasonable MWD (Mw/Mn ≤ 1.6) were synthesized by living ROP of ε‐caprolactone using spirobititanocanes ( 2a , 2b ) and titanocane 1c as initiators. The latter catalysts, according MALDI‐TOF‐MS data, afford poly(ε‐caprolactone)s with almost equal content of α,ω‐dihydroxyl‐ and α‐hydroxyl‐ω(carboxylic acid)‐terminated chains arising due to monomer insertion into “Ti–O” bond of dialkanolamine ligand and from initiation via traces of water, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1230–1240, 2010  相似文献   

19.
Acidic bismuth salts, such as BiCl3, BiBr3, BiJ3, and Bi‐triflate catalyzed the ring‐opening polymerization of 2‐methoxazoline (MOZ) in bulk at 100 °C, whereas less acidic salts such as Bi2O3 or Bi(III)acetate did not. Bi‐triflate‐catalyzed polymerizations of 2‐ethyloxazoline (EtOZ) were performed with variation of the monomer–catalyst ratio (M/C). It was found that the molecular weights were independent of the M/C ratio. The formation of cationic chain ends and the absence of cycles was proven by reactions of virgin polymerization products with N,N‐dimethyl‐4‐aminopyridine or triphenylphosphine. The resulting polymers having modified cationic chain ends were characterized by 1H NMR spectroscopy and MALDI‐TOF mass spectrometry. The polymerization mechanism including chain‐transfer reactions is discussed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4777–4784, 2008  相似文献   

20.
Polyaddition of an α‐azide‐ω‐alkyne monomer by Cu(PPh3)3Br catalyzed 1,3‐dipolar cycloaddition was thoroughly studied as a model system to investigate the orthogonality of this click chemistry process. Indeed, loss of chain‐end functionality and occurrence of side reactions have a tremendous impact on the molar mass of polymers obtained by step growth polymerization. Particularly, SEC, 1H, and 31P NMR experiments have highlighted the occurrence of a Staudinger side‐reaction between azide chain‐ends and PPh3 from the copper(I) catalyst that dramatically alters Mn of the resulting polytriazoles. A significant enhancement of Mn could be achieved by using an alternative catalyst and optimized experimental conditions, that is, dilution and reaction time. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2470–2476, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号