首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The effect of gem‐dialkyl substituents on the backbone conformations of β‐amino acid residues in peptides has been investigated by using four model peptides: Boc‐Xxx‐β2,2Ac6c(1‐aminomethylcyclohexanecarboxylic acid)‐NHMe (Xxx=Leu ( 1 ), Phe ( 2 ); Boc=tert‐butyloxycarbonyl) and Boc‐Xxx‐β3,3Ac6c(1‐aminocyclohexaneacetic acid)‐NHMe (Xxx=Leu ( 3 ), Phe ( 4 )). Tetrasubstituted carbon atoms restrict the ranges of stereochemically allowed conformations about flanking single bonds. The crystal structure of Boc‐Leu‐β2,2Ac6c‐NHMe ( 1 ) established a C11 hydrogen‐bonded turn in the αβ‐hybrid sequence. The observed torsion angles (α(?≈?60°, ψ≈?30°), β(?≈?90°, θ≈60°, ψ≈?90°)) corresponded to a C11 helical turn, which was a backbone‐expanded analogue of the type III β turn in αα sequences. The crystal structure of the peptide Boc‐Phe‐β3,3Ac6c‐NHMe ( 4 ) established a C11 hydrogen‐bonded turn with distinctly different backbone torsion angles (α(?≈?60°, ψ≈120°), β(?≈60°, θ≈60°, ψ≈?60°)), which corresponded to a backbone‐expanded analogue of the type II β turn observed in αα sequences. In peptide 4 , the two molecules in the asymmetric unit adopted backbone torsion angles of opposite signs. In one of the molecules, the Phe residue adopted an unfavorable backbone conformation, with the energetic penalty being offset by a favorable aromatic interaction between proximal molecules in the crystal. NMR spectroscopy studies provided evidence for the maintenance of folded structures in solution in these αβ‐hybrid sequences.  相似文献   

2.
The crystal structure of methyl 2‐acetamido‐2‐deoxy‐β‐d ‐glycopyranosyl‐(1→4)‐β‐d ‐mannopyranoside monohydrate, C15H27NO11·H2O, was determined and its structural properties compared to those in a set of mono‐ and disaccharides bearing N‐acetyl side‐chains in βGlcNAc aldohexopyranosyl rings. Valence bond angles and torsion angles in these side chains are relatively uniform, but C—N (amide) and C—O (carbonyl) bond lengths depend on the state of hydrogen bonding to the carbonyl O atom and N—H hydrogen. Relative to N‐acetyl side chains devoid of hydrogen bonding, those in which the carbonyl O atom serves as a hydrogen‐bond acceptor display elongated C—O and shortened C—N bonds. This behavior is reproduced by density functional theory (DFT) calculations, indicating that the relative contributions of amide resonance forms to experimental C—N and C—O bond lengths depend on the solvation state, leading to expectations that activation barriers to amide cistrans isomerization will depend on the polarity of the environment. DFT calculations also revealed useful predictive information on the dependencies of inter‐residue hydrogen bonding and some bond angles in or proximal to β‐(1→4) O‐glycosidic linkages on linkage torsion angles ? and ψ. Hypersurfaces correlating ? and ψ with the linkage C—O—C bond angle and total energy are sufficiently similar to render the former a proxy of the latter.  相似文献   

3.
α,β‐Unsaturated amino acids (dehydroamino acids) have been found in naturally occurring antibiotics of microbial origin and in some proteins. Due to the presence of the CαCβ double bond, the dehydroamino acids influence the main‐chain and the side‐chain conformations. The lowest‐energy conformational state of the model tripeptides, Ac–X–ΔAla–NHMe, (X=Ala, Val, Leu, Abu, or Phe) corresponds to ϕ1=−30°, ψ1=120° and ϕ22=30°. This structure is stabilized by the hydrogen bond between CO of the acetyl group and the NH of the amide group, resulting in the formation of a 10‐membered ring. In the model heptapeptide containing ΔAla at alternate position with Ala, Abu, and Leu, the lowest‐energy conformation corresponds to ϕ=−30° and ψ=120° for all the Ala, Abu, and Leu residues and ϕ=ψ=30° for all ΔAla residues. A graphical view of the molecule in this conformation reveals the formation of three hydrogen bonds involving the CO moiety of the ith residue and the NH moiety of the i+3th residue, resulting in a 10‐membered ring formation. In this structure, only alternate peptide bonds are involved in the intramolecular hydrogen‐bond formation unlike the helices and it has been named the β‐bend ribbon structure. The helical structures were predicted to be the most stable structures in the heptapeptide Ac–(Aib–ΔAla)3–NHMe with ϕ=±30°, ψ=±60° for Aib residues and ϕ=ψ=±30° for ΔAla residues. The computational results reveal that the ΔAla residue does not induce an inverse γ‐turn in the preceding residue. It is the competitive interaction of small solvent molecules with the hydrogen‐bonding sites of the peptide which gives rise to the formation of an inverse γ‐turn (ϕ1=−54°, ψ1=82°; ϕ2=44°, ψ2=3°) in the preceding residue to ΔAla. The computational studies for the positional preference of ΔAla in the peptide containing one ΔAla and nine Ala residues reveals the formation of a 310 helical structure in all the cases with the terminal preferences for ΔAla, consistent with the position of ΔAla in the natural antibiotics. The extended structures is found to be the most stable for poly‐ΔAla. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 72: 15–23, 1999  相似文献   

4.
The crystal structure of methyl α‐d ‐mannopyranosyl‐(1→3)‐2‐O‐acetyl‐β‐d ‐mannopyranoside monohydrate, C15H26O12·H2O, ( II ), has been determined and the structural parameters for its constituent α‐d ‐mannopyranosyl residue compared with those for methyl α‐d ‐mannopyranoside. Mono‐O‐acetylation appears to promote the crystallization of ( II ), inferred from the difficulty in crystallizing methyl α‐d ‐mannopyranosyl‐(1→3)‐β‐d ‐mannopyranoside despite repeated attempts. The conformational properties of the O‐acetyl side chain in ( II ) are similar to those observed in recent studies of peracetylated mannose‐containing oligosaccharides, having a preferred geometry in which the C2—H2 bond eclipses the C=O bond of the acetyl group. The C2—O2 bond in ( II ) elongates by ~0.02 Å upon O‐acetylation. The phi (?) and psi (ψ) torsion angles that dictate the conformation of the internal O‐glycosidic linkage in ( II ) are similar to those determined recently in aqueous solution by NMR spectroscopy for unacetylated ( II ) using the statistical program MA′AT, with a greater disparity found for ψ (Δ = ~16°) than for ? (Δ = ~6°).  相似文献   

5.
Prediction of protein loop conformations without any prior knowledge (ab initio prediction) is an unsolved problem. Its solution will significantly impact protein homology and template‐based modeling as well as ab initio protein‐structure prediction. Here, we developed a coarse‐grained, optimized scoring function for initial sampling and ranking of loop decoys. The resulting decoys are then further optimized in backbone and side‐chain conformations and ranked by all‐atom energy scoring functions. The final integrated technique called loop prediction by energy‐assisted protocol achieved a median value of 2.1 Å root mean square deviation (RMSD) for 325 12‐residue test loops and 2.0 Å RMSD for 45 12‐residue loops from critical assessment of structure‐prediction techniques (CASP) 10 target proteins with native core structures (backbone and side chains). If all side‐chain conformations in protein cores were predicted in the absence of the target loop, loop‐prediction accuracy only reduces slightly (0.2 Å difference in RMSD for 12‐residue loops in the CASP target proteins). The accuracy obtained is about 1 Å RMSD or more improvement over other methods we tested. The executable file for a Linux system is freely available for academic users at http://sparks‐lab.org . © 2013 Wiley Periodicals, Inc.  相似文献   

6.
A three‐dimensional nuclear magnetic resonance (NMR) pulse sequence named as hNCOcanH has been described to aid rapid sequential assignment of backbone resonances in 15N/13C‐labeled proteins. The experiment has been derived by a simple modification of the previously described HN(C)N pulse sequence [Panchal et al., J. Biomol. NMR 20 (2001) 135–147]; t2 evolution is used to frequency label 13C′ rather than 15N (similar trick has also been used in the design of hNCAnH pulse sequence from hNcaNH [Frueh et al., JACS, 131 (2009) 12880–12881]). The modification results in a spectrum equivalent to HNCO, but in addition to inter‐residue correlation peaks (i.e. Hi, Ci?1), the spectrum also contains additional intra‐residue correlation peaks (i.e. Hi?1, Ci?1) in the direct proton dimension which has maximum resolution. This is the main strength of the experiment and thus, even a small difference in amide 1H chemical shifts (5–6 Hz) can be used for establishing a sequential connectivity. This experiment in combination with the HNN experiment described previously [Panchal et al., J. Biomol. NMR 20 (2001) 135–147] leads to a more robust assignment protocol for backbone resonances (1HN, 15N) than could be derived from the combination of HNN and HN(C)N experiments [Bhavesh et al., Biochemistry, 40 (2001) 14727–14735]. Further, this new protocol enables assignment of 13C′ resonances as well. We believe that the experiment and the protocol presented here will be of immense value for structural—and functional—proteomics research by NMR. Performance of this experiment has been demonstrated using 13C/15N labeled ubiquitin. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
A new three‐residue turn was serendipitously discovered in α/β hybrid peptides derived from alternating C‐linked carbo‐β‐amino acids (β‐Caa) and L ‐Ala residues. The three‐residue β‐α‐β turn at the C termini, nucleated by a helix at the N termini, resulted in helix‐turn (HT) supersecondary structures in these peptides. The turn in the HT motif is stabilized by two H bonds—CO(i?2)–NH(i), with a seven‐membered pseudoring (γ turn) in the backward direction, and NH(i?2)–CO(i), with a 13‐membered pseudoring in the forward direction (i being the last residue)—at the C termini. The study was extended to generalize the new three‐residue turn (β‐α‐β) by using different α and β‐amino acids. Furthermore, the HT motifs were efficiently converted, by an extension with helical oligomers at the C termini, into peptides with novel helix‐turn‐helix (HTH) tertiary structures. However, this resulted in the destabilization of the β‐α‐β turn with the concomitant nucleation of another three‐residue turn, α‐β‐β, which is stabilized by 11‐ and 15‐membered bifurcated H bonds. Extensive NMR spectroscopic studies were carried out to delineate the secondary and tertiary structures in these peptides, which are further supported by molecular dynamics (MD) investigations.  相似文献   

8.
Protein structure prediction is a long‐standing problem in molecular biology. Due to lack of an accurate energy function, it is often difficult to know whether the sampling algorithm or the energy function is the most important factor for failure of locating near‐native conformations of proteins. This article examines the size dependence of sampling effectiveness by using a perfect “energy function”: the root‐mean‐squared distance from the target native structure. Using protein targets up to 460 residues from critical assessment of structure prediction techniques (CASP11, 2014), we show that the accuracy of near native structures sampled is relatively independent of protein sizes but strongly depends on the errors of predicted torsion angles. Even with 40% out‐of‐range angle prediction, 2 Å or less near‐native conformation can be sampled. The result supports that the poor energy function is one of the bottlenecks of structure prediction and predicted torsion angles are useful for overcoming the bottleneck by restricting the sampling space in the absence of a perfect energy function. © 2015 Wiley Periodicals, Inc.  相似文献   

9.
Kinetics of silver electrodeposition in the presence of sulfide ions is studied on electrodes renewed by cutting off a thin surface layer, at a controlled time of contact of the “fresh” surface with the electrolyte. Solutions containing 10?2 M AgNO3, 0.1 M thiocarbamide, 0.5 M HClO4, and from 2 × 10?6 to 1.5 × 10?5 M Na2S are studied. It is shown that under the studied conditions, the effect of silver electrodeposition on the surface concentration of sulfide ions is insignificant. As the concentration of sulfide ions in solution and their coverage on the electrode surface θ increase, the cathodic polarization decreases. Tafel curves plotted for θ = const are used in estimating the exchange current i 0 and the transfer coefficient α. It is shown that α ≈ 0.5 and weakly depends on θ, whereas the exchange current increases with the increase in θ by an approximately linear law from 10?5 A/cm2 at θ ? 0 to 10?4 A/cm2 at θ = 0.43. The obtained data are compared with the results of kinetic studies of silver anodic dissolution in similar solutions.  相似文献   

10.
Matrix‐assisted laser desorption/ionization in‐source decay (MALDI‐ISD) is initiated by hydrogen transfer from matrix molecules to the carbonyl oxygen of peptide backbone with subsequent radical‐induced cleavage leading to c′/z? fragments pair. MALDI‐ISD is a very powerful method to obtain long sequence tags from proteins or to do de novo sequencing of peptides. Besides classical fragmentation, MALDI‐ISD also shows specific fragments for which the mechanism of formation enlightened the MALDI‐ISD process. In this study, the MALDI‐ISD mechanism is reviewed, and a specific mechanism is studied in details: the N‐terminal side of Cys residue (Xxx‐Cys) is described to promote the generation of c′ and w fragments in MALDI‐ISD. Our data suggest that for sequences containing Xxx‐Cys motifs, the N–Cα bond cleavage occurs following the hydrogen attachment to the thiol group of Cys side‐chain. The c?/w fragments pair is formed by side‐chain loss of the Cys residue with subsequent radical‐induced cleavage at the N–Cα bond located at the left side (N‐terminal direction) of the Cys residue. This fragmentation pathway preferentially occurs at free Cys residue and is suppressed when the cysteines are involved in disulfide bonds. Hydrogen attachment to alkylated Cys residues using iodoacetamide gives free Cys residue by the loss of ?CH2CONH2 radical. The presence of alkylated Cys residue also suppress the formation of c?/w fragments pair via the (Cβ)‐centered radical, whereas w fragment is still observed as intense signal. In this case, the z? fragment formed by hydrogen attachment of carbonyl oxygen followed side‐chain loss at alkylated Cys leads to a w fragment. Hydrogen attachment on peptide backbone and side‐chain of Cys residue occurs therefore competitively during MALDI‐ISD process. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Microphase‐separated structures of a series of AB6 block‐graft copolymers were studied by TEM and SAXS. Ten copolymers with the same polystyrene (S) backbone and six polyisoprene (I) grafts on the average but with different graft chain lengths were carefully synthesized by living anionic polymerization, covering the range 0.21 ≤ ?S ≤ 0.90, where ?S denotes polystyrene compositions. From TEM observation of the AB6 block‐graft copolymers, it turns out to be clear that they show four microphase‐separated structures, S‐spheres, S‐cylinders(S‐prisms), alternative lamellae, and I‐cylinders. Among them, for example, the samples with 0.54 ≤ ?S ≤ 0.58 shows prism structures whose cross sections of the S domains are close to hexagons, not circles, due to packing frustration of grafts. Composition dependence of morphologies of the present AB6 block‐graft copolymers reveals their phase diagram is extremely asymmetric with respect to ?S = 0.5. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 952–960  相似文献   

12.
Glycine (Gly) is incorporated in roughly half of all known peptaibiotic (nonribosomally biosynthesized antibiotic peptides of fungal origin) sequences and is the residue with the greatest conformational flexibility. The conformational space of Aib (α‐aminoisobutyric acid) is severely restricted by the second methyl group attached to the Cα atom. Most of the crystal structures containing Aib are N‐terminal protected. Deprotection of the N‐ or C‐terminus of peptides may alter the hydrogen‐bonding scheme and/or the structure and may facilitate crystallization. The structure reported here for glycyl‐α‐aminoisobutyrylglycyl‐α‐aminoisobutyric acid tert‐butyl ester, C16H30N4O5, describes the first N‐terminal‐unprotected (Gly‐Aib)n peptide. The achiral peptide could form an intramolecular hydrogen bond between the C=O group of Gly1 and the N—H group of Aib4. This hydrogen bond is found in all tetrapeptides and N‐terminal‐protected tripeptides containing Aib, apart from one exception. In the present work, this hydrogen bond is not observed (N...O = 5.88 Å). Instead, every molecule is hydrogen bonded to six other symmetry‐related molecules with a total of eight hydrogen bonds per molecule. The backbone conformation starts in the right‐handed helical region (and the left‐handed helical region for the inverted molecule) and reverses the screw sense in the last two residues.  相似文献   

13.
The reaction of the β‐diketoiminate lithium complex (dipp)NacNacLi · OEt2 ((dipp)NacNac = 2‐((2,6‐diisopropylphenyl)amino)‐4‐((2,6‐diisopropylphenyl)imino)‐pent‐2‐enyl) with iPrMgCl and MgI2 yield the corresponding (dipp)NacNacMgiPr · OEt2 ( 1 ) and (dipp)NacNacMgI · OEt2 ( 2 ). The reaction of 2 with NaBH4 in diethylether gives (dipp)NacNacMg(μ‐H)3BH · OEt2 ( 3 ). The core element of compounds 1 – 3 is a six‐membered ring formed by N(1)–C(1)–C(2)–C(3)–N(2) and magnesium. The structures of 1 and 2 show the β‐diketoiminate backbone in a boat‐conformation with the tetrahedrally coordinated metal center at the prow and the opposing carbon atom at the stern. The magnesium atom in 3 is octahedrally coordinated and out of the β‐diketoiminate plane.  相似文献   

14.
An α‐helical model peptide (Ac‐EAEKAAKE‐X‐EKAAKEAEK‐amide) was used as a template to examine the efficacy of conventional reversed‐phase high‐performance liquid chromatography (RP‐HPLC) in separating peptide analogs with single substitutions (at position X) of diasteromeric amino acids Ile, allo‐Ile, d ‐Ile and d ‐allo‐Ile. We compared differences in peptide retention behavior on a C8 column and a C18 column at different temperatures. We demonstrated how subtle differences in peptide secondary structure affected by the different substitutions of amino acids with identical overall hydrophobicity enabled effective resolution of these peptide analogs. We also demonstrated the ability of RP‐HPLC to separate Ile‐ and allo‐Ile‐substituted analogs of a 26‐residue α‐helical antimicrobial peptide (AMP), with the substitution site towards the C‐terminus of the α‐helix. These peptides show different values of antibacterial activity and hemolytic activity, and different selectivity against bacteria and human cells. Our results underline the ability of RP‐HPLC to resolve even difficult diasteromeric peptide mixtures as well as its value in monitoring very subtle hydrophobicity changes in de novo‐designed AMP. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
In a fine-grained computational analysis of protein structure, we investigated the relationships between a residue's backbone conformations and its side-chain packing as well as conformations. To produce continuous distributions in high resolution, we ran molecular dynamics simulations over a set of protein folds (dynameome). In effect, the dynameome dataset samples not only the states well represented in the PDB but also the known states that are not well represented in the structural database. In our analysis, we characterized the mutual influence among the backbone ?,ψ angles with the first side-chain torsion angles (χ1) and the volumes occupied by the side-chains. The dependencies of these relationships on side-chain environment and amino acids are further explored. We found that residue volumes exhibit dependency on backbone 2° structure conformation: side-chains pack more densely in extended β-sheet than in α-helical structures. As expected, residue volumes on the protein surface were larger than those in the interior. The first side-chain torsion angles are found to be dependent on the backbone conformations in agreement with previous studies, but the dynameome dataset provides higher resolution of rotamer preferences based on the backbone conformation. All three gauche?, gauche+, and trans rotamers show different patterns of ?,ψ dependency, and variations in χ1 value are skewed from their canonical values to relieve the steric strains. By demonstrating the utility of dynameomic modeling on the native state ensemble, this study reveals details of the interplay among backbone conformations, residue volumes and side-chain conformations.  相似文献   

16.
3JC′C′ and 3JHNHα couplings are related to the intervening backbone torsion angle ${\varphi }$ by standard Karplus equations. Although these couplings are known to be affected by parameters other than ${\varphi }$ , including H‐bonding, valence angles and residue type, experimental results and quantum calculations indicate that the impact of these latter parameters is typically very small. The solution NMR structure of protein GB3, newly refined by using extensive sets of residual dipolar couplings, yields 50–60 % better Karplus equation agreement between ${\varphi }$ angles and experimental 3JC′C′ and 3JHNHα values than does the high‐resolution X‐ray structure. In intrinsically disordered proteins, 3JC′C′ and 3JHNHα couplings can be measured at even higher accuracy, and the impact of factors other than the intervening torsion angle on 3J will be smaller than in folded proteins, making these couplings exceptionally valuable reporters on the ensemble of ${\varphi }$ angles sampled by each residue.  相似文献   

17.
The goal of this study is twofold. First, to investigate the relative influence of the main structural factors affecting the computation of the 13C′ shielding, namely, the conformation of the residue itself and the next nearest‐neighbor effects. Second, to determine whether calculation of the 13C′ shielding at the density functional level of theory (DFT), with an accuracy similar to that of the 13Cα shielding, is feasible with the existing computational resources. The DFT calculations, carried out for a large number of possible conformations of the tripeptide Ac‐G XY ‐NMe, with different combinations of X and Y residues, enable us to conclude that the accurate computation of the 13C′ shielding for a given residue X depends on the: (i) (?,ψ) backbone torsional angles of X ; (ii) side‐chain conformation of X ; (iii) (?,ψ) torsional angles of Y ; and (iv) identity of residue Y . Consequently, DFT‐based quantum mechanical calculations of the 13C′ shielding, with all these factors taken into account, are two orders of magnitude more CPU demanding than the computation, with similar accuracy, of the 13Cα shielding. Despite not considering the effect of the possible hydrogen bond interaction of the carbonyl oxygen, this work contributes to our general understanding of the main structural factors affecting the accurate computation of the 13C′ shielding in proteins and may spur significant progress in effort to develop new validation methods for protein structures. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
The refined dependence of the peptide NHCαH vicinal coupling constant on the dihedral angle θ have been derived on the basis of the accumulated experimental data. The mean permissible values (in Hz) are approximated by 3JNHCH = 9·4 cos2 θ - 1·1 cos θ + 0·4 An analogous relationship for the sum of two vicinal NHCαH2 coupling constants in the glycyl residue have been calculated from the above dependence. Measurements on N-methylacetamide in various solvents and in the presence of an alkali salt showed the vicinal constant NHCH to vary by not more than ± 3%. Some of the other proposed 3JNHCH(θ) dependencies give too low values for the cis-oriented NH and CαH bonds. This may be due to the fact that in these correlations the data for compounds with cis-amide bonds have been used for 0° ? θ ? 90° region of the dependence.  相似文献   

19.
Owing to steric congestion in i‐Pr2(2,4,6‐i‐Pr3C6H2)SiF, the geometry at the Si atom deviates slightly from ideal tetrahedral geometry with an increased C? Si? C angle of 119.02(9)° and elongated Si? C and Si? F bond distances. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
Phase separation temperatures of the ternary system polystyrene (PS) (Mw = 1.67 × 104)/poly(α-methyl styrene) (PαMS) (Mw = 9.0 × 104)/cyclopentane with a blend ratio PS/PαMS = 55/45 have been determined over the polymer concentration range 0.02 ≤ ψPS + PαMS ≤ 0.52, where ψ PS + PαMS is the segment fraction of polymer in ternary system. Phase separation temperatures for the upper critical separation in the ternary system decrease with increasing ψ PS + PαMS over the range 0.1 ≤ ψ PS + PαMS ≤ 0.52. The vapor—liquid equilibrium in this system with a blend ratio PS/PαMS=50/50 has been determined over the concentration range 0.925 ≤ ψPS + PαMS < 0.995 and the temperature range 60–100°C by the piezoelectric vapor sorption method. The polymer—polymer interaction parameters χ′12 determined are positive except at 100°C and increase with increasing ψ PS + PαMS. Values of χ′12 extrapolated to zero solvent concentration are positive (0.0–1.3) over the temperature range measured. Phase separation behavior is discussed in terms of phase separation temperature in a ternary system and the polymer–polymer interaction parameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号