首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on a new method for preconcentration of silver ion at trace level in environmental samples, and its subsequent determination by flame atomic absorption spectrometry (FAAS). The room temperature ionic liquid (RTIL) 1-butyl-3-methylimidazolium hexafuorophosphate and the chelator 5-(4-dimethylaminobenzylidene)-rhodanine were used for extraction. Ag(I) was back-extracted from the organic phase into thiosulfate solution and then determined via FAAS. The effects of pH, concentration of chelating agent, extraction time and temperature, amounts of ionic liquid, ionic strength and potentially interfering ions were studied. Under optimized conditions, the enhancement factor is 30 was achieved. The detection limit (3???) is 0.28?ng?mL?1, and the relative standard deviation is 4.1% for 7 replicate determinations at 5?ng?mL?1 of Ag(I). The method was validated by analysis of certified reference materials and applied to the determination of Ag(I) in environmental samples with satisfactory results.
Graphical abstract
Silver ions at trace level in environmental samples were chelated by 5-(4-dimethylaminobenzylidene)-rhodanine and preconcentrated by room temperature ionic liquid. After back-extraction, silver was determined by flame atomic absorption spectrometry sensitively.  相似文献   

2.
To pursue optimum condition in liquid‐liquid‐liquid microextraction (LLLME), extraction parameters dominating extraction efficiency were investigated by theoretical considerations. The theoretical considerations discussed equilibrium model for equilibrium LLLME and non‐equilibrium model for dynamic LLLME. A method described here is a dynamic LLLME technique combined with high‐performance liquid‐chromatography ultraviolet absorbance detection (HPLC/UV) to determine traces of nitrophenols in water. Analytical parameters such as organic phase, acceptor phase volume, sample agitation, extraction time, acceptor phase NaOH concentration, donor phase HCl concentration, salt addition, and absorption wavelength were identified as variable settings. Relative standard deviation (RSD, 1.8‐4.4%), coefficient of estimation (R2, 0.9994‐0.9999), and detection limit (0.032‐0.065 ng mL?1) were achieved under the variable settings. The proposed method was successfully applied to the analysis of a lake water sample, and the relative recoveries of nitrophenols from spiked water sample were up to 92.5%. The variable settings of LLLME close to optimization was responsible for an acceptable extraction efficiency.  相似文献   

3.
This paper presents a fast and simple method for the extraction, preconcentration and determination of fluvoxamine, nortriptyline and maprotiline in urine using simultaneous derivatization and temperature‐assisted dispersive liquid–liquid microextraction (TA‐DLLME) followed by gas chromatography–flame ionization detection (GC‐FID). An appropriate mixture of dimethylformamide (disperser solvent), 1,1,2,2‐tetrachloroethane (extraction solvent) and acetic anhydride (derivatization agent) was rapidly injected into the heated sample. Then the solution was cooled to room temperature and cloudy solution formed was centrifuged. Finally a portion of the sedimented phase was injected into the GC‐FID. The effect of several factors affecting the performance of the method, including the selection of suitable extraction and disperser solvents and their volumes, volume of derivatization agent, temperature, salt addition, pH and centrifugation time and speed were investigated and optimized. Figures of merit of the proposed method, such as linearity (r2 > 0.993), enrichment factors (820–1070), limits of detection (2–4 ng mL?1) and quantification (8–12 ng mL?1), and relative standard deviations (3–6%) for both intraday and interday precisions (concentration = 50 ng mL?1) were satisfactory for determination of the selected antidepressants. Finally the method was successfully applied to determine the target pharmaceuticals in urine. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
In this work, a fast, easy, and efficient dispersive liquid–liquid microextraction method based on solidification of floating organic drop followed by high‐performance liquid chromatography with UV detection was developed for the separation/preconcentration and determination of the drug valsartan. Experimental design was applied for the optimization of the effective variables (such as volume of extracting and dispersing solvents, ionic strength, and pH) on the extraction efficiency of valsartan from urine samples. The optimized values were 250.0 μL ethanol, 65.0 μL 1‐dodecanol, 4.0% w/v NaCl, pH 3.8, 1.0 min extraction time, and 4.0 min centrifugation at 4000 rpm min?1. The linear response (r2 = 0.997) was obtained in the range of 0.013–10.0 μg mL?1 with a limit of detection of 4.0 ng mL?1 and relative standard deviations of less than 5.0 % (n = 6).  相似文献   

5.
We report on the determination of bisphenol A and 2-naphthol in water samples using ionic liquid cold-induced aggregation dispersive liquid-liquid microextraction combined with HPLC. Parameters governing the extraction efficiency (disperser solvent, volume of extraction and disperser solvent, pH, temperature, extraction time) were optimized and resulted in enrichment factors of 112 for bisphenol A and of 186 for 2-naphthol. The calibration curve was linear with correlation coefficients of 0.9995 and 0.9998, respectively, in the concentration range from 1.5 to 200?ng?mL?1. The relative standard deviations are 2.3% and 4.1% (for n?=?5), the limits of detection are 0.58 and 0.86?ng?mL?1, and relative recoveries in tap, lake and river water samples range between 100.1 and 108.1%, 99.4 and 106.2%, and 97.1 and 103.8%, respectively.
Figure
IL-CIA-DLLME has a high enrichment factor (112, 186), acceptable relative recovery (97.1%?C108.1%), good repeatability (2.3%, 4.1%) and a wide linear range(1.5?C200?ng?mL?1 ) for the determination of bisphenol A and 2-naphthol.  相似文献   

6.
A solid‐phase extraction method for preconcentration of silver and consequent determination by atomic absorption spectrometry is described. The method is based on the adsorption of silver on naphthalene modified with dithizone in a column. The adsorbed silver is eluted from the column with a thiourea solution and determined by flame atomic absorption spectrometry. The adsorption conditions including pH, reagent concentration, eluent volume, flow rate and interfering ions were investigated. The calibration graph was linear in the range 10–1000 ng mL?1 of Ag in the initial solution with r = 0.9998. The limit of detection based on 3Sb was 3.9 ng mL?1. The relative standard deviation for ten replicate measurements of 40 and 600 ng mL?1 of Ag was 4.4% and 0.9%, respectively. The method was applied to the determination of silver in mineral, radiology film and wound dressing samples.  相似文献   

7.
We report on the use of hollow fiber liquid-liquid-liquid microextraction (HF-LLLME) followed by corona discharge ion mobility spectrometry for the determination of dextromethorphan and pseudoephedrine in urine and plasma samples. The effects of pH of the donor phase, stirring rate, ionic strength and extraction time on HF-LLLME were optimized. Under the optimized conditions, the linear range of the calibration curves for dextromethorphan in plasma and urine, respectively, are from 1.5 to 150 and from 1 to 100 ng mL?1. The ranges for pseudoephedrine, in turn, are from 30 to 300 and from 20 to 200 ng mL?1. Correlation coefficients are better than 0.9903. The limits of detection are 0.6 and 0.3 ng mL?1 for dextromethorphan, and 8.6 and 4.2 ng mL?1 for pseudoephedrine in plasma and urine samples, respectively. The relative standard deviations range from 6 to 8%.
Figure
Hollow fiber liquid–liquid–liquid microextraction (HF-LLLME) followed by corona discharge ion mobility spectrometry (CD-IMS) was used for the determination of dextromethorphan and pseudoephedrine in urine and plasma samples.  相似文献   

8.
For the first time, electrospun composite nanofibers comprising polymeric crown ether with polystyrene (PCE‐PS) have been used for the selective extraction of catecholamines – dopamine (DA), norepinephrine (NE) and epinephrine (E) – prior to their analysis by high‐performance liquid chromatography–electrochemical detection. Using a minicartridge packed with PCE‐PS composite nanofibers, the target compounds were extracted effectively from urine samples to which diphenylborinic acid 2‐aminoethyl ester was added as a complexing reagent. The extracted catecholamines could be liberated from the fiber by the addition of acetic acid. A good linearity was observed for catecholamines in the range of 2.0–200 ng mL?1 (NE, E and DA). The detection limits of catecholamines (signal‐to‐noise ratio = 3) were 0.5 ng mL?1 (NE), 0.2 ng mL?1 (E) and 0.2 ng mL?1 (DA), respectively. Under the optimized conditions, the absolute recoveries of the above three catecholamines were 90.6% (NE), 88.5% (E) and 94.5% (DA). The repeatability of extraction performance was from 5.4 to 9.2% (expressed as relative standard deviation). Our results indicate that the proposed method could be used for the determination of NE, E and DA in urine. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Dispersive liquid–liquid microextraction (DLLME) has been developed for the extraction and preconcentration of diethofencarb (DF) and pyrimethanil (PM) in environmental water. In the method, a suitable mixture of extraction solvent (50 µL carbon tetrachloride) and dispersive solvent (0.75 mL acetonitrile) are injected into the aqueous samples (5.00 mL) and the cloudy solution is observed. After centrifugation, the enriched analytes in the sediment phase were determined by HPLC-VWD. Different influencing factors, such as the kind and volume of extraction and dispersive solvent, extraction time and salt effect were investigated. Under the optimum conditions, the enrichment factors for DF and PM were both 108 and the limit of detection were 0.021 ng mL?1 and 0.015 ng mL?1, respectively. The linear ranges were 0.08–400 ng mL?1 for DF and 0.04–200 ng mL?1 for PM. The relative standard deviation (RSDs) were both almost at 6.0% (n = 6). The relative recoveries from samples of environmental water were from the range of 87.0 to 107.2%. Compared with other methods, DLLME is a very simple, rapid, sensitive (low limit of detection) and economical (only 5 mL volume of sample) method.  相似文献   

10.
A simple, sensitive and reproducible flotation‐spectrophotometric method for the determination of thorium is reported. The method is based on the ion‐associate formation between thorium, xylenol orange (XO) and cethyltrimethyl ammonium bromide (CTAB) which is floated in the interface of the aqueous phase and n‐hexane by vigorous shaking. By discarding the aqueous solution and n‐hexane, the adsorbed ion‐associate (Th‐XO‐CTAB) on the wall of a separating funnel was dissolved in a small volume of ethanol solvent, and its absorbance was measured at 568 nm. The effects of different parameters such as pH, concentrations of HCl, XO, and CTAB, volume of n‐hexane, and standing and shaking time were studied. The calibration graph was linear in the concentration range of 2–200 ng mL?1 of thorium(r = 0.9994). The limit of detection (LOD) is 1.4 ng mL?1. The relative standard deviations (RSD) at 50 and 175 ng mL?1 of thorium were 2.5% and 1.0% (n = 7), respectively. The method was successfully applied to the determination of thorium in gas mantel samples.  相似文献   

11.
A column, solid phase extraction (SPE), preconcentration method was developed for determination of silver by using alumina coated with 1-((5-nitrofuran-2-yl)methylene)thiosemicarbazide and determination by flame atomic absorption spectrometry. The separation/preconcentration conditions for the quantitative recovery were investigated. At pH 2, the maximum sorption capacity of Ag+ was 7.5?mg?g?1. The linearity was maintained in the concentration range of 0.02–11.0?µg?mL?1 in the final solution or 0.14–1.10?×?104?ng?mL?1 in the original solution for silver. The preconcentration factor of 140 and relative standard deviation of ±1.4% was obtained, under optimum conditions. The limit of detection (LOD) was calculated as 0.112?ng?mL?1, based on 3σbl/m (n?=?8) in the original solutions. The proposed method was successfully applied to the determination trace amounts of silver in the environmental samples such as tea, rice and wheat flour, mint, and real water samples.  相似文献   

12.
This paper describes a highly sensitive and label‐free electrochemical immunosensor for the detection of 1‐pyrenebutyric acid (PBA) which is based on a graphene (GS), chitosan (CS), and ionic liquid (IL) composite modified glassy carbon electrode (GS‐CS‐IL/GCE). The modification process was monitored by transmission electron microscopy (TEM) and cyclic voltammetry (CV). Due to the synergistic effects of GS, CS, and IL, the biosensor exhibits excellent selectivity to PBA. The current response of the proposed immunosensor decreases linearly at two concentration ranges from 0.01 to 5 and from 5 to 150 ng mL?1 with a detection limit of 0.01 ng mL?1.  相似文献   

13.
A method based on molecular crowding and ionic liquids as reaction solvents has been used for the synthesis of molecularly imprinted polymers. Levofloxacin was selected as the template, polymethyl methacrylate was the molecular crowding agent, and 1‐butyl‐3‐methylimidazolium tetrafluoroborate (ionic liquid) was selected as the reaction solvent and porogen. The optimized proportion for the mixed porogen was dimethyl sulfoxide/ionic liquid/polymethyl methacrylate 1:1.6:5 in chloroform (150 mg mL?1). The morphology and chemical composition of levofloxacin imprinted polymers were assessed by scanning electron microscopy and Fourier transform infrared spectroscopy. The absorption experiments demonstrated that the levofloxacin imprinted polymers possess high selective recognition property to levofloxacin and analogs, including enrofloxacin, ciprofloxacin and gatifloxacin, which all belong to fluoroquinolones. An extraction method using levofloxacin imprinted polymers as sorbent followed by high‐performance liquid chromatography analysis was optimized for the determination of four fluoroquinolones in milk and lake water samples. Under the optimized conditions, good linearity was observed in a range of 5–1000 ng g?1 with the limit of detection between 0.3 and 0.5 ng g?1 for the four fluoroquinolones. The recoveries at three spiked levels ranged 82.4–98.3% with the relative standard deviation ≤4.9.  相似文献   

14.
An analytical procedure for the simultaneous determination in human urine of several thioamphetamine designer drugs (2C‐T and ALEPH series) is reported. The quantitative analysis was performed by liquid chromatography/tandem mass spectrometry and has been fully validated. The mass spectrometer was operated in positive‐ion, selected reaction monitoring (SRM) mode. In order to minimize interferences with matrix components and to preconcentrate target analytes, solid‐phase extraction was introduced in the method as a clean‐up step. The entire method was validated for selectivity, linearity, precision and accuracy. The method turned out to be specific, sensitive, and reliable for the analysis of amphetamine derivatives in urine samples. The calibration curves were linear over the concentration range of 1 to 100 ng mL?1 for all drugs with correlation coefficients that exceeded 0.996. The lower limits of detection (LODs) and quantification (LOQs) ranged from 1.2 to 4.9 ng mL?1 and from 3.2 to 9.6 ng mL?1, respectively. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
A rapid and novel method combining dispersive liquid–liquid microextraction and high-performance liquid chromatography coupled with fluorescence detection was developed for the determination of donepezil in human urine. Parameters affecting extraction efficiency and chromatographic determination, such as the type and volume of the extraction and disperser solvent, pH of sample for dispersive liquid–liquid microextraction, mobile-phase composition, pH, column oven temperature, and flow rate for chromatographic determination, were evaluated and optimized. Using a C18 core–shell column (7.5 × 4.6?mm, 2.7?μm), the determination of donepezil was accomplished within 5?min. Under optimum conditions, developed method was linear in the range of 0.5–25?ng?mL?1 with the correlation coefficient >0.99. Limit of detection was 0.15?ng?mL?1. The relative standard deviation at three concentration levels (2, 12.5, and 20?ng?mL?1) was less than 11% with accuracy in the range of 96.9–102.8%. The results of this study demonstrate that the use of dispersive liquid–liquid microextraction and core–shell column can be considered as a powerful tool for the analysis of donepezil in human urine.  相似文献   

16.
A novel liquid-phase microextraction method, continuous-flow microextraction (CFME), combined with high-performance liquid chromatography and variable-wavelength detection, has been used for determination of phoxim in water samples. Extraction is conducted in a home-made glass chamber. A 3-μL drop of n-hexane is injected into the chamber by means of a microsyringe and held at the outlet tip of a PTFE connecting tube. The sample solution flows through the extraction glass chamber, past the tube, and the solvent drop interacts continuously with the sample solution and extraction proceeds simultaneously. The effects of different extraction solvents, solvent drop volume, sample flow rate, extraction time, and addition of salt on extraction efficiency were studied. Under the optimum extraction conditions a linear calibration plot, correlation coefficient (R2) 0.9988, was obtained for phoxim in the concentration range 0.01 to 10 μg mL?1. The limit of detection (LOD) was 5 ng mL?1 and the relative standard deviation (RSD) at the 100 ng mL?1 level was 4.1%. Lake water and tap water samples were successfully analyzed by use of the proposed method.  相似文献   

17.
A sensitive and straightforward liquid–liquid–liquid microextraction method was developed to preconcentrate and cleanup antidepressants, including mirtazapine, venlafaxine, escitalopram, fluoxetine, and fluvoxamine, from biological samples before analyzing with high-performance liquid chromatography. The essential novelty of this study is using magnetic ionic liquids as the extraction phase in the lumen of hollow fiber and preparing a liquid magnetic stir bar. In this method, polypropylene hollow fiber was utilized as the permeable membrane for the analyte extraction. Six magnetic ionic liquids consisting of the transition metal and rare earth compounds were synthesized and then hollow fiber lumen was injected as acceptor phase to extract the antidepressants. Besides, 3-pentanol as a water-immiscible solvent was impregnated in the hollow fiber wall pores. The effective factors in the method were optimized with the central composition design. The resultant calibration curves were linear over the concentration range of 0.8–400.0 ng mL−1 (R2 ≥ 0.996). The method displayed the proper detection limit (0.11–0.24 ng mL−1), the reasonable limit of quantification (≤0.79 ng mL−1), wide linear ranges, high preconcentration factors (≥294.3), and suitable relative standard deviation (2.31–5.47%) for measuring antidepressant medications. Analysis of human milk and urine samples showed acceptable recoveries of 96.5–103.8% with excellent relative standard deviations lower than 5.95%.  相似文献   

18.
A poly(4‐vinylpridine‐co‐ethylene glycol dimethacrylate) monolith was synthesized in a capillary and constructed as a concentrator for the in‐line polymeric monolith microextraction coupling with capillary electrophoresis. The integrated system was then used for the simultaneous determination of five trace phenols (2‐nitrophenol, 3‐nitrophenol, 4‐nitrophenol, 2‐chlorophenol, and 2,4‐dichlorophenol) in water samples. The experimental parameters for in‐line solid‐phase extraction, such as composition and volume of the elution plug, pH of sample solution, and the time for sample loading were optimized. The sensitivity for the mixture of phenols (2‐nitrophenol, 3‐nitrophenol, 4‐nitrophenol, 2‐chlorophenol, and 2,4‐dichlorophenol) enhanced to 615–2222 folds at the optimum condition was compared to the sensitivity for a normal hydrodynamic injection in capillary electrophoresis. Linearity ranged from concentration of 10–500 ng mL?1(R2 > 0.999) for all five phenols with the detection limits of 1.3–3.3 ng mL?1. In tap, snow and Yangtze River water spiked with 20 ng mL?1 and 200 ng mL?1, respectively, the recoveries of 84–105% were obtained. It has been demonstrated that this work has great potential for the analysis of phenols in genuine water samples.  相似文献   

19.
We describe a method for ionic liquid based dispersive liquid-liquid microextraction of Co(II), Cu(II), Mn(II), Ni(II) and Zn(II), followed by their determination via flow injection inductively coupled plasma optical emission spectrometry. The method is making use of the complexing agent 1-(2-thenoyl)-3,3,3-trifluoracetone, the ionic liquid 1-hexyl-3-methyl imidazolium bis(trifluoromethylsulfonyl)imide, and of ethanol as the dispersing solvent. After extraction and preconcentration, the sedimented ionic liquid (containing the target analytes) is collected, diluted with 1-propanol, and introduced to the ICP-OES. Effects of pH, ionic strength, ligand to metal molar ratio, volumes of extraction and disperser solvents on the performance of the microextraction were optimized in a half-fractional factorial design. The significant parameters were optimized using a face-centered central composite design. The method has detection limits between 0.10 and 0.20?ng?mL?1 of the metal ions, preconcentration factors between 79 and 102, linear responses in 0.25 to 200?ng?mL?1 concentration ranges, and relative standard deviations of 3.4 to 6.0%. The method was successfully applied to the analysis of drinking water, a fish farming pond water, and waste water from an industrial complex.
Figure
Ionic liquid based dispersive liquid-liquid microextraction of Co, Cu, Mn, Ni and Zn followed by determination via flow injection inductively coupled plasma optical emission spectrometry  相似文献   

20.
A porous carbon designated as MOF‐5‐C was prepared by directly carbonizing a metal–organic framework (MOF‐5). The morphology and microstructure of MOF‐5‐C were characterized by scanning electron microscopy, N2 adsorption, and powder X‐ray diffraction. The MOF‐5‐C retained the original porous structures of MOF‐5, and showed a high Brunauer–Emmett–Teller surface area (1808 m2 g?1) and large pore volume (3.05 cm3 g?1). To evaluate its adsorption performance, the MOF‐5‐C was used as an adsorbent for the solid‐phase extraction of four phthalate esters from bottled water, peach juice, and soft drink samples followed by high‐performance liquid chromatographic analysis. Several parameters that could affect the extraction efficiencies were investigated. Under the optimum conditions, a good linearity was achieved in the concentration range of 0.1–50.0 ng mL?1 for bottled water sample and 0.2–50.0 ng mL?1 for peach juice and soft drink samples. The limits of detection of the method (S/N = 3) were 0.02 ng mL?1 for bottled water sample, and 0.04–0.05 ng mL?1 for peach juice and soft drink samples. The results indicated that the MOF‐5‐C exhibited an excellent adsorption capability for trace levels of phthalate esters, and it could be a promising adsorbent for the preconcentration of other organic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号