首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular structure and intramolecular hydrogen bond energy of 32 conformers of 4‐methylamino‐3‐penten‐2‐one were investigated at MP2 and B3LYP levels of theory using the standard 6–31G** basis set and AIM analyses. Furthermore, calculations for all the possible conformations of 4‐methylamino‐3‐penten‐2‐one in water solution were also carried out at B3LYP/6–31G** level of theory. The calculated geometrical parameters and conformational analyses in gas phase and water solution show that the ketoamine conformers of this compound are more stable than the other conformers (i.e., enolimine and ketoimine). This stability is mainly due to the formation of a strong N? H···O intramolecular hydrogen bond, which is assisted by π‐electrons resonance. Hydrogen bond energies for all conformers of 4‐methylamino‐3‐penten‐2‐one were obtained from the related rotamers method. The nature of intramolecular hydrogen bond existing within 4‐methylamino‐3‐penten‐2‐one has been investigated by means of the Bader theory of atoms in molecules, which is based on topological properties of the electron density. The results of these calculations support the results which obtained by related rotamers method. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

2.
Semihydrogenation of α,β‐unsaturated ynoates and ‐ynones bearing a γ‐alkoxy group can be performed using triphenylphosphine and water. α,β‐Unsaturated ynoates were reduced to a mixture of cis and trans α,β‐unsaturated enoates, whereas, ynones were reduced to trans α,β‐unsaturated enones as the only products.  相似文献   

3.
We added parameters to the AMBER* force field to model cyclic β‐amino acid derivatives more accurately within the commonly used MacroModel program. In an effort to generate an improved treatment of cyclohexane and cyclopentane conformational preferences, carbon–carbon torsional parameters were modified and incorporated into a force field we call AMBER*C. Simulation of trans‐2‐aminocyclohexanecarboxylic acid (trans‐ACHC) and trans‐2‐aminocyclopentanecarboxylic acid (trans‐ACPC) derivatives using AMBER*C produces more realistic energy differences between (pseudo)diaxial and (pseudo)diequatorial conformations than does simulation using AMBER*. AMBER*C molecular dynamics simulations more accurately reproduce the experimental hydrogen‐bonding tendencies of simple diamide derivatives of trans‐ACHC and trans‐ACPC than do simulations using the AMBER* force field. More importantly, this modified force field allows accurate qualitative prediction of the helical secondary structures adopted by β‐amino acid homo‐oligomers. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 763–773, 2000  相似文献   

4.
β‐Methyl‐α‐methylene‐γ‐butyrolactone (MMBL) was synthesized and then was polymerized in an N,N‐dimethylformamide (DMF) solution with 2,2‐azobisisobutyronitrile (AIBN) initiation. The homopolymer of MMBL was soluble in DMF and acetonitrile. MMBL was homopolymerized without competing depolymerization from 50 to 70 °C. The rate of polymerization (Rp) for MMBL followed the kinetic expression Rp = [AIBN]0.54[MMBL]1.04. The overall activation energy was calculated to be 86.9 kJ/mol, kp/kt1/2 was equal to 0.050 (where kp is the rate constant for propagation and kt is the rate constant for termination), and the rate of initiation was 2.17 × 10?8 mol L?1 s?1. The free energy of activation, the activation enthalpy, and the activation entropy were 106.0, 84.1, and 0.0658 kJ mol?1, respectively, for homopolymerization. The initiation efficiency was approximately 1. Styrene and MMBL were copolymerized in DMF solutions at 60 °C with AIBN as the initiator. The reactivity ratios (r1 = 0.22 and r2 = 0.73) for this copolymerization were calculated with the Kelen–Tudos method. The general reactivity parameter Q and the polarity parameter e for MMBL were calculated to be 1.54 and 0.55, respectively. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1759–1777, 2003  相似文献   

5.
The interaction energy of a molecule M with a point-like charge q can be partitioned into simpler contributions, two of which can be expressed in terms of the charge distribution M of the sole M. The first term, qV(r), represents the interaction of q with the undistorted charge M 0 of M while the second q 2 P(r) gives the additional contributions due to the polarization of M 0 under the influence of the charge q placed at the point r. In this paper we investigate the possibility of getting an inexpensive and sufficiently accurate analytical representation of P(r) over the whole space outside the van der Waals volume of M.  相似文献   

6.
The mass spectra of a series of N‐aryl α,β‐unsaturated γ‐lactams were studied. Besides the molecular ion, the three characteristic fragments such as [M+‐29], [M+‐55], and [M+‐82] were commonly found in a series of N‐Aryl α,β‐unsaturated γ‐lactams in EI/MS. Further more the mechanism for the interpretation of these fragments is also de scribed.  相似文献   

7.
Recent studies using quantum mechanics energy decomposition methods, for example, SAPT and ALMO, have revealed that the charge transfer energy may play an important role in short ranged inter‐molecular interactions, and have a different distance dependence comparing with the polarization energy. However, the charge transfer energy component has been ignored in most current polarizable or non‐polarizable force fields. In this work, first, we proposed an empirical decomposition of SAPT induction energy into charge transfer and polarization energy that mimics the regularized SAPT method (ED‐SAPT). This empirical decomposition is free of the divergence issue, hence providing a good reference for force field development. Then, we further extended this concept in the context of AMOEBA polarizable force field, proposed a consistent approach to treat the charge transfer phenomenon. Current results show a promising application of this charge transfer model in future force field development. © 2017 Wiley Periodicals, Inc.  相似文献   

8.
In the past decade, more than 100 different cathinone derivatives slopped over entire Europe due to their enormous popularity. Generally, these novel psychoactive substances are easily available via the internet. This fact leads to various social problems, since cathinones are substances with consciousness‐changing effects and are mainly misused for recreational matters by their consumers. Cathinones possess a chiral center including two enantiomeric forms with potentially different pharmacological behavior. This fact makes analytical method development regarding their chiral separation indispensable. In this study, a chiral capillary zone electrophoresis method for the enantioseparation of 61 cathinone and pyrovalerone derivatives was developed by means of four different β‐cyclodextrin derivatives. As chiral selectors, native β‐cyclodextrin as well as three of its derivatives namely acetyl‐β‐cyclodextrin, 2‐hydroxypropyl‐β‐cyclodextrin, and carboxymethyl‐β‐cyclodextrin were used. The cathinone and pyrovalerone derivatives were either purchased in internet stores or seized by police. As a result, overall 58 of 61 studied substances were partially or baseline separated by at least one of the four chiral selectors using 10 mM of β‐cyclodextrin derivative in a 10 mM sodium phosphate buffer (pH 2.5). Furthermore, the method was found to be suitable for simultaneous enantioseparations, for enantiomeric purity checks and to differentiate between positional isomers. Moreover, an intra‐ and an interday validation was performed successfully for each chiral selector to prove the robustness of the method.  相似文献   

9.
A series of β‐bromoketones and β‐chloroketones were synthesized by the addition reactions of α,β‐unsaturated ketones under BX3 (X = Br, Cl) and ethylene glycol reaction system. The α,β‐unsaturated ester also was successfully converted to its corresponding β‐bromoester under the reaction condition.  相似文献   

10.
To complete our panorama in structure–activity relationships (SARs) of sandalwood‐like alcohols derived from analogues of α‐campholenal (= (1R)‐2,2,3‐trimethylcyclopent‐3‐ene‐1‐acetaldehyde), we isomerized the epoxy‐isopropyl‐apopinene (?)‐ 2d to the corresponding unreported α‐campholenal analogue (+)‐ 4d (Scheme 1). Derived from the known 3‐demethyl‐α‐campholenal (+)‐ 4a , we prepared the saturated analogue (+)‐ 5a by hydrogenation, while the heterocyclic aldehyde (+)‐ 5b was obtained via a Bayer‐Villiger reaction from the known methyl ketone (+)‐ 6 . Oxidative hydroboration of the known α‐campholenal acetal (?)‐ 8b allowed, after subsequent oxidation of alcohol (+)‐ 9b to ketone (+)‐ 10 , and appropriate alkyl Grignard reaction, access to the 3,4‐disubstituted analogues (+)‐ 4f,g following dehydration and deprotection. (Scheme 2). Epoxidation of either (+)‐ 4b or its methyl ketone (+)‐ 4h , afforded stereoselectively the trans‐epoxy derivatives 11a,b , while the minor cis‐stereoisomer (+)‐ 12a was isolated by chromatography (trans/cis of the epoxy moiety relative to the C2 or C3 side chain). Alternatively, the corresponding trans‐epoxy alcohol or acetate 13a,b was obtained either by reduction/esterification from trans‐epoxy aldehyde (+)‐ 11a or by stereoselective epoxidation of the α‐campholenol (+)‐ 15a or of its acetate (?)‐ 15b , respectively. Their cis‐analogues were prepared starting from (+)‐ 12a . Either (+)‐ 4h or (?)‐ 11b , was submitted to a Bayer‐Villiger oxidation to afford acetate (?)‐ 16a . Since isomerizations of (?)‐ 16 lead preferentially to β‐campholene isomers, we followed a known procedure for the isomerization of (?)‐epoxyverbenone (?)‐ 2e to the norcampholenal analogue (+)‐ 19a . Reduction and subsequent protection afforded the silyl ether (?)‐ 19c , which was stereoselectively hydroborated under oxidative condition to afford the secondary alcohol (+)‐ 20c . Further oxidation and epimerization furnished the trans‐ketone (?)‐ 17a , a known intermediate of either (+)‐β‐necrodol (= (+)‐(1S,3S)‐2,2,3‐trimethyl‐4‐methylenecyclopentanemethanol; 17c ) or (+)‐(Z)‐lancifolol (= (1S,3R,4Z)‐2,2,3‐trimethyl‐4‐(4‐methylpent‐3‐enylidene)cyclopentanemethanol). Finally, hydrogenation of (+)‐ 4b gave the saturated cis‐aldehyde (+)‐ 21 , readily reduced to its corresponding alcohol (+)‐ 22a . Similarly, hydrogenation of β‐campholenol (= 2,3,3‐trimethylcyclopent‐1‐ene‐1‐ethanol) gave access via the cis‐alcohol rac‐ 23a , to the cis‐aldehyde rac‐ 24 .  相似文献   

11.
An approach for re‐folding denatured proteins during proteome research by protein folding liquid chromatography (PFLC) is presented. Standard protein, α‐chymotrypsin (α‐Chy), was selected as a model protein and hydrophobic interaction chromatography was performed as a typical PFLC; the three different α‐Chy states – urea‐denatured (U state), its folded intermediates (M state) and nature state (N state) – were studied during protein folding. Based on the test by matrix‐assisted laser desorption/ionization time of flight mass spectrometry and bioactivity, only one stable M state of the α‐Chy was identified and then it was prepared for further investigation. The specific bioactivity of the refolded α‐Chy was found to be higher than that of commercial α‐Chy as the urea concentration in the sample solution ranged from 1.0 to 3.0 m ; the highest specific bioactivity at urea concentration was 1.0 m , indicating the possibility for re‐folding some proteins that have partially or completely lost their bioactivity, as a dilute urea solution was employed for dissolving the sample. The experiment showed that the peak height of its M state increased with increasing urea concentration, and correspondingly decreased in the amount of the refolded α‐Chy. When the urea concentration reached 6.0 m , the unfolded α‐Chy could not be refolded at all. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
The DNA binding domain of transposon Tn916 integrase (INT‐DBD) binds to DNA target site by positioning the face of a three‐stranded antiparallel β‐sheet within the major groove. As the negatively charged DNA directly interacts with the positively charged residues (such as Arg and Lys) of INT‐DBD, the electrostatic interaction is expected to play an important role in the dynamical stability of the protein–DNA binding complex. In the current work, the combined use of quantum‐based polarized protein‐specific charge (PPC) for protein and polarized nucleic acid‐specific charge (PNC) for DNA were employed in molecular dynamics simulation to study the interaction dynamics between INT‐DBD and DNA. Our study shows that the protein–DNA structure is stabilized by polarization and the calculated protein–DNA binding free energy is in good agreement with the experimental data. Furthermore, our study revealed a positive correlation between the measured binding energy difference in alanine mutation and the occupancy of the corresponding residue's hydrogen bond. This correlation relation directly relates the contribution of a specific residue to protein–DNA binding energy to the strength of the hydrogen bond formed between the specific residue and DNA. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
Computer simulation using molecular dynamics is increasingly used to simulate the folding equilibria of peptides and small proteins. Yet, the quality of the obtained results depends largely on the quality of the force field used. This comprises the solute as well as the solvent model and their energetic and entropic compatibility. It is, however, computational very expensive to perform test simulations for each combination of force‐field parameters. Here, we use the one‐step perturbation technique to predict the change of the free enthalpy of folding of a β‐peptide in methanol solution due to changing a variety of force‐field parameters. The results show that changing the solute backbone partial charges affects the folding equilibrium, whereas this is relatively insensitive to changes in the force constants of the torsional energy terms of the force field. Extending the cut‐off distance for nonbonded interactions beyond 1.4 nm does not affect the folding equilibrium. The same result is found for a change of the reaction‐field permittivity for methanol from 17.7 to 30. The results are not sensitive to the criterion, e.g., atom‐positional RMSD or number of hydrogen bonds, that is used to distinguish folded and unfolded conformations. Control simulations with perturbed Hamiltonians followed by backward one‐step perturbation indicated that quite large perturbations still yield reliable results. Yet, perturbing all solvent molecules showed where the limitations of the one‐step perturbation technique are met. The evaluated methodology constitutes an efficient tool in force‐field development for molecular simulation by reducing the number of required separate simulations by orders of magnitude. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

14.
15.
The crystal structure of methyl α‐d ‐mannopyranosyl‐(1→3)‐2‐O‐acetyl‐β‐d ‐mannopyranoside monohydrate, C15H26O12·H2O, ( II ), has been determined and the structural parameters for its constituent α‐d ‐mannopyranosyl residue compared with those for methyl α‐d ‐mannopyranoside. Mono‐O‐acetylation appears to promote the crystallization of ( II ), inferred from the difficulty in crystallizing methyl α‐d ‐mannopyranosyl‐(1→3)‐β‐d ‐mannopyranoside despite repeated attempts. The conformational properties of the O‐acetyl side chain in ( II ) are similar to those observed in recent studies of peracetylated mannose‐containing oligosaccharides, having a preferred geometry in which the C2—H2 bond eclipses the C=O bond of the acetyl group. The C2—O2 bond in ( II ) elongates by ~0.02 Å upon O‐acetylation. The phi (?) and psi (ψ) torsion angles that dictate the conformation of the internal O‐glycosidic linkage in ( II ) are similar to those determined recently in aqueous solution by NMR spectroscopy for unacetylated ( II ) using the statistical program MA′AT, with a greater disparity found for ψ (Δ = ~16°) than for ? (Δ = ~6°).  相似文献   

16.
A carbonylative α‐arylation process employing unactivated nitriles for the first time is described. The reaction tolerates a range of (hetero)aryl iodides and several nitrile coupling partners. No prefunctionalization of the nitriles is necessary and the resulting β‐ketonitriles are obtained in good to excellent yields. The methodology also allows for a convenient 13C‐labelling of the generated carbonyl moiety.  相似文献   

17.
18.
19.
A series of N‐aryl 2‐alkenamides were produced efficiently by treating N‐aryl 3‐(phenylsulfonyl)‐propanamides with potassium tert‐butoxide in THF at 0°C. With out isolation, it was further treated with an additional equivalent of potassium tert‐butoxide and allyl bromide to give N‐allyl N‐aryl 2‐alkenamides in one pot in good yields. Followed by a ring‐closing metathesis reaction, these N‐allyl N‐aryl 2‐alkenamides were respectively converted into corresponding N‐aryl α,β‐unsaturated γ‐lactams in moderate yields.  相似文献   

20.
Cyclic β‐bromo‐α,β‐unsaturated carboxylic acids are carbonylatively cyclized with primary amines under carbon monoxide pressure in MeCN in the presence of a catalytic amount of PdCl2(PPh3)2 to give N‐alkylmaleimides. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号