首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiwalled carbon nanotubes (MWCNTs) were functionalized with two types of chemical moieties (i.e. carboxylic, ? COOH and hydroxyl benzoic acid groups, ‐HBA) on their sidewalls in order to improve their interaction with a liquid crystalline polymer (LCP) and dispersion in LCP. We have investigated the rheological, mechanical, dynamic mechanical, and thermal properties in detail with variation of HBA‐functionalized MWCNTs in the LCP matrix. Effect of the dispersion state of the functionalized MWCNTs in the LCP matrix on the rheological behavior was also studied. The composites containing HBA‐functionalized MWCNTs showed higher complex viscosity, storage, and loss modulus than the composites with the same loading of raw MWCNTs and MWCNT‐COOH. It was suggested that the HBA‐functionalized MWCNTs exhibited a better dispersion in the polymer matrix and formed stronger CNT‐polymer interaction in the composites than the raw MWCNTs and MWCNT‐COOH, which was also confirmed by FESEM and FTIR studies. As a result, the overall mechanical performance of the HBA‐MWCNT‐LCP composites could be improved significantly. For example, the addition of 4 wt% HBA‐MWCNT to LCP resulted in the considerable improvements in the tensile strength and modulus of LCP (by 66 and 90%, respectively). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
3.
磁性多壁碳纳米管吸附水中双氯芬酸的热力学与动力学   总被引:4,自引:0,他引:4  
研究了磁化多壁碳纳米管(MWCNTs)对于水中非甾体抗炎药双氯芬酸的吸附过程.结果表明,双氯芬酸的吸附量随磁性MWCNTs投加量的增加而增大,而且吸附剂量增加到一定阶段后,双氯芬酸的吸附量达到平衡.在磁性MWCNTs的量为0.7g·L-1时,水溶液中双氯芬酸被磁性MWCNTs吸附的量达到最大,为33.37mg·g-1,对应的双氯芬酸去除率为98.1%.双氯芬酸的去除率随溶液pH的增加先增大后下降,随温度的升高而下降.用准一级、准二级模型进行了动力学分析.回归结果表明,准二级模型更准确地反映了吸附动力学.通过实验确定了Langmuir和Freundlich等温线的线性相关系数与标准偏差,结果揭示出Langmuir等温线与实验数据有很好的拟合度.对热力学参数的计算表明,ΔG00,意味着磁性MWCNTs对双氯芬酸的吸附是自发的;ΔH00,指明吸附是一个放热的物理吸附过程,温度低对吸附有利;ΔS00,代表该吸附是熵增过程.  相似文献   

4.
An electrochemical dsDNA nanobiosensor was fabricated using amino‐functionalized multi walled carbon nanotubes modified glassy carbon electrode (NH2fMWCNTs/GCE) for the sensitive detection of DNA bases and electrochemical monitoring of drug‐DNA interaction. The influence of functional groups on MWCNT was studied by MWCNT functionalized with NH2 (NH2fMWCNTs) and COOH (COOHfMWCNT) groups based on the signal of DNA bases. The modified electrodes were characterized by scanning electron microscopy. One layer of calf thymus double stranded deoxyribonucleic acid (ct‐dsDNA) was immobilized onto the NH2fMWCNTs/GCE (dsDNA/NH2fMWCNTs/GCE). The dsDNA/NH2fMWCNTs/GCE were used to investigate the interaction between the dsDNA and the anticancer drug gemcitabine by differential pulse voltammetry in acetate buffer of pH 4.70. For the confirmation of interaction, the lowering in intensity of the current signals of guanine and adenine was considered as an indicator. Electrochemical impedance spectroscopy studies were performed for the comparison of the modified surfaces. In order to define and visualize the interaction mechanism between gemcitabine and dsDNA/NH2fMWCNTs/GCE at the molecular level, in silico methods including docking and molecular dynamics simulations were employed.  相似文献   

5.
Multiwall carbon nanotubes (MWCNTs) were modified by nitric acid solution and then used to study the adsorption of cesium from aqueous solution using a batch technique under ambient conditions. As produced and oxidized MWCNTs were characterized by nitrogen adsorption/desorption, Boehm’s titration method and Fourier transform infrared spectroscopy. The physical properties of MWCNTs such as functional groups, total number of acid sites and specific surface area were greatly improved after oxidation, and these were responsible for more sorption of cesium from aqueous solution and made them more dispersible in water. The adsorption of cesium ions as a function of contact time, initial concentration of cesium, pH, ionic strength and oxidized MWCNT concentrations was also investigated. The results showed that cesium adsorption percentage strongly depended on the pH value, oxidized MWCNT content and on the solution ionic strength. Kinetic data indicated that the adsorption process achieved equilibrium within 80 min. Equilibrium data for as produced and oxidized MWCNTs was well described by both Freundlich and Langmuir isotherms. The dominant mechanism of cesium adsorption on oxidized MWCNTs may be mainly attributed to ion exchange. This study suggests that oxidized MWCNTs can be a promising candidate for the removal of cesium from nuclear waste solution.  相似文献   

6.
Hybrid membranes containing multi‐walled carbon nanotubes (MWCNTs) were initially prepared to separate benzene/cyclohexane mixtures. Subsequently, MWCNT surfaces were chemically modified using two methods to change the surface polarity of the MWCNTs and improve the distribution thereof in Poly(methylmethacrylate) (PMMA). This change consequently enhanced the separation performance of hybrid membranes with MWCNTs. Raman spectroscopy was used to characterize the structure of the pristine MWCNTs and the modified MWCNTs. The morphology and distribution of the MWCNTs in PMMA were investigated by transmission electron microscopy. The results showed that the addition of MWCNTs clearly improved the separation performance of the hybrid membranes. Surface modification introduced polar groups onto the MWCNT surface, which significantly improved the distribution of MWCNTs in the PMMA membranes and the performance of hybrid membranes. MWCNTs with higher surface polarity also increased the amount of MWCNTs distributed homogeneously in PMMA. Aminated MWCNTs (MWCNT‐NH2) showed the highest surface polarity. Thus, the content of MWCNT‐NH2 well distributed in PMMA was the highest among the three types of MWCNTs. The highest separation factor for the hybrid membranes with 1.0 wt% MWCNT‐NH2 was about seven times that of membranes containing pristine MWCNTs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
The voltammetric behavior of dopamine (DA) and uric acid (UA) on a gold electrode modified with self‐assembled monolayer (SAM) of cysteamine (CA) conjugated with functionalized multiwalled carbon nanotubes (MWCNTs) was investigated. The film modifier of functionalized SAM was characterized by means of scanning electron microscopy (SEM) and also, electrochemical impedance spectroscopy (EIS) using para‐hydroquinone (PHQ) as a redox probe. For the binary mixture of DA and UA, the voltammetric signals of these two compounds can be well separated from each other, allowing simultaneous determination of DA and UA. The effect of various experimental parameters on the voltammetric responses of DA and UA was investigated. The detection limit in differential pulse voltammetric determinations was obtained as 0.02 µM and 0.1 µM for DA and UA, respectively. The prepared modified electrode indicated a stable behavior and the presence of surface COOH groups of the functionalized MWCNT avoided the passivation of the electrode surface during the electrode processes. The proposed method was successfully applied for the determination of DA and UA in urine samples with satisfactory results. The response of the gold electrode modified with MWCNT‐functionalized SAM method toward DA, UA, and ascorbic acid (AA) oxidation was compared with the response of the modified electrode prepared by the direct casting of MWCNT.  相似文献   

8.
Multi-walled and single-walled carbon nanotubes were used as nanoadsorbents for the successful removal of Reactive Blue 4 textile dye from aqueous solutions. The adsorbents were characterised by infrared and Raman spectroscopy, N(2) adsorption/desorption isotherms and scanning and transmission electron microscopy. The effects of pH, shaking time and temperature on adsorption capacity were studied. In the acidic pH region (pH 2.0), the adsorption of the dye was favourable using both adsorbents. The contact time to obtain equilibrium isotherms at 298-323 K was fixed at 4 hours for both adsorbents. The general order kinetic model provided the best fit to the experimental data compared with pseudo-first order and pseudo-second order kinetic adsorption models. For Reactive Blue 4 dye, the equilibrium data (298 to 323 K) were best fitted to the Liu isotherm model. The maximum sorption capacity for adsorption of the dye occurred at 323 K, attaining values of 502.5 and 567.7 mg g(-1) for MWCNT and SWCNT, respectively. Simulated dyehouse effluents were used to check the applicability of the proposed nanoadsorbents for effluent treatment (removal of 99.89% and 99.98%, for MWCNT and SWCNT, respectively). The interaction of Reactive Blue 4 textile dye with single-walled carbon nanotubes (SWCNTs) was investigated using first principles calculations based on density functional theory. Results from ab initio calculations indicated that Reactive Blue 4 textile dye could be adsorbed on SWCNT through an electrostatic interaction; these results are in agreement with the experimental predictions.  相似文献   

9.
The present study narrates the eminent role of agricultural wastes as adsorbents viz., Indian almond shell carbon (IASC), ground nut shell carbon (GSC), areca nut shell carbon (ASC), tamarind shell carbon (TSC) and cashew nut shell carbon (CSC) for the removal of Azure A (AA) dye from waste water. Different experimental parameters such as effect of initial concentration, contact time, dose, pH and particle size have been studied. The experimental results were analysed using Freundlich, Langmuir, Temkin, Redlich–Peterson and Dubinin–Radushkevich isotherm models. Different kinetic equations (first order, pseudo first order and pseudo second order) were applied to study the adsorption kinetics of AA on various activated carbons. Surface morphology of the adsorbents before and after adsorption is studied by Scanning Electron Microscopy (SEM). FT-IR studies revealed the presence of functional groups of dye on the adsorbents. It is inferred from the experimental result that the activated carbons (IASC, GSC, ASC, TSC and CSC) from agricultural wastes can be applied as an adsorbent substitute to commercial activated carbon (CAC) in the removal of AA dye from waste water.  相似文献   

10.
In the present investigation, the preparation, characterization, and surface morphology of poly(amide‐imide) (PAI)/multi‐walled carbon nanotubes (MWCNTs) bionanocomposites (BNCs) were the main goals of the study. At first, an optically active PAI based on S‐valine as a biodegradable segment was synthesized. Then, carboxyl‐modified MWCNTs were functionalized with glucose (f‐MWCNT) as a biological active molecule in a green method to achieve a fine dispersion of f‐MWCNT bundles in the PAI matrix. The existence of S‐valine in the PAI matrix and functionalized MWCNT with glucose resulted in a series of potentially biodegradable nanocomposites. The obtained BNCs were characterized by various techniques. Field emission scanning and transmission electron microscopy micrographs of the composites showed a fine dispersion of f‐MWCNTs in the polymer matrix because of hydrogen bonding and π–π stacking interaction between f‐MWCNTs and polymer functional groups and aromatic moieties. Adding f‐MWCNTs into polymer matrix significantly improved the thermal stability of BNCs because of the increased interfacial interaction between the PAI matrix and f‐MWCNTs and also good dispersion of f‐MWCNT in the polymer matrix. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
In this work, successful polymer coating of COOH‐functionalized multiwalled carbon nanotubes (MWCNTs) via reversible addition fragmentation chain transfer (RAFT) mediated emulsion polymerization is reported. The method used amphiphilic macro‐RAFT copolymers as stabilizers for MWCNT dispersions, followed by their subsequent coating with poly(methyl methacrylate‐co‐butyl acrylate). Poly(allylamine hydrochloride) was initially used to change the charge on the surface of the MWCNTs to facilitate adsorption of negatively charged macro‐RAFT copolymer onto their surface via electrostatic interactions. After polymerization, the resultant latex was found to contain uniform polymer‐coated MWCNTs where polymer layer thickness could be controlled by the amount of monomer fed into the reaction. The polymer‐coated MWCNTs were demonstrated to be dispersible in both polar and nonpolar solvents. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

12.
The adsorption of Cr(VI) and Ni(II) using ethylenediaminetetraacetic acid‐modified diatomite waste (EDTA‐DW) as an adsorbent in single and binary systems was investigated. The EDTA‐DW was characterized using various analytical techniques, including Fourier transform infrared spectroscopy, thermogravimetric analysis, Brunauer–Emmett–Teller measurements, X‐ray diffraction, scanning electron microscopy and energy‐dispersive spectrometry. The adsorption experiment was conducted by varying pH, adsorbent dosage, initial concentration and temperature. In the single system, the sorption data for Cr(VI) fitted the Langmuir isotherm, but the Ni(II) adsorption data fitted well the Freundlich isotherm. The maximum sorption capacity of Cr(VI) and Ni(II) was 2.9 mg g?1 at pH = 3 and 3.64 mg g?1 at pH = 8, respectively. The kinetic data for both Cr(VI) and Ni(II) followed well the pseudo‐second‐order kinetic model in single and binary systems. Meanwhile, the extended Langmuir and extended Freundlich multicomponent isotherm models were found to fit the competitive adsorption data for Cr(VI) and Ni(II). In addition, in the binary system, the existence of Ni(II) hindered the adsorption of Cr(VI), but the presence of Cr(VI) enhanced the removal of Ni(II). This study provides some realistic and valid data about the usage of modified diatomite waste for the removal of metal ions.  相似文献   

13.
The electrochemical oxidation of naproxen was investigated at a multiwalled carbon nanotube (MWCNT)‐modified electrode. A decrease (200 mV) in the overpotential of the naproxen oxidation reaction and considerable (4‐fold) current increase (compared to the bare glassy‐carbon electrode) was observed. Two one‐electron transfers were verified at both bare and MWCNT‐modified electrodes and thus a new mechanism for the electrochemical oxidation of naproxen is proposed. Indicative of a mass transport regime that includes a thin‐layer diffusional process (entrapment of naproxen species within the MWCNT film) is presented as a possible explanation for the lowered oxidation potential and substantial current increase. The anti‐fouling properties of MWCNTs on the amperometric detection of naproxen using a batch‐injection analysis (BIA) system is demonstrated.  相似文献   

14.
A novel surface ion imprinted adsorbent [Co(II)‐IIP] using polyethyleneimine (PEI) as function monomer and ordered mesoporous silica SBA‐15 as support matrix was prepared for Co(II) analysis with high selectivity. The prepared polymer was characterized by Fourier transmission infrared spectrometry, scanning electron microscopy, X‐ray diffraction and nitrogen adsorption‐desorption isotherm. Bath experiments of Co(II) adsorption onto Co(II)‐IIP were performed under the optimum conditions. The experimental data were analyzed by pseudo‐first‐order and pseudo‐second‐order kinetic models. It was found that the pseudo‐second‐order model best correlated the kinetic data. The intraparticle diffusion and liquid film diffusion were applied to discuss the adsorption mechanism. The results showed that Co(II) adsorption onto IIP was controlled by the intraparticle diffusion mechanism, along with a considerable film diffusion contribution. Langmuir, Freundlich and Dubinin‐Radushke‐ vich adsorption models were applied to determine the isotherm parameters. Langmuir model fitted the experiment data well and the maximum calculated capacity of Co(II) reached 39.26 mg/g under room temperature. The thermodynamic data were indicative of the spontaneousness of the endothermic sorption process of Co(II) onto Co(II)‐IIP. Co(II)‐IIP showed high affinity and selectivity for template ion compared with non imprinted polymer (NIP).  相似文献   

15.
The high electrically conductive carboxyl‐functionalized multiwalled carbon nanotubes (COOH‐MWCNTs) were used to combine with nonconducting polyimide (PI) to generate a PI/COOH‐MWCNTs membrane. PI served as a matrix to entrap COOH‐MWCNTs and hemoglobin (Hb). COOH‐MWCNTs can improve the conductivity of the composite. The direct electrochemistry measurement indicated that the PI/COOH‐MWCNTs composite enhanced the immobilization of Hb significantly. Besides, the Hb/PI/COOH‐MWCNTs/GCE biosensor possessed excellent electrocatalytic activity for the detection of nitrite. Therefore, PI is a good matrix for Hb immobilization and it has application in sensor construction. This work is promising in the development of sensitive biosensors based on PI/COOH‐MWCNTs composite film.  相似文献   

16.
In this study, the sorption behavior of two important contaminants, phenol and radioactive cesium (137Cs), onto surfactant modified insolubilized humic acid (SMIA) were investigated as a function of time, sorbate concentration utilizing the radiotracer method and UV–Vis spectroscopy. Phenol sorption process was well described by both Freundlich and Tempkin type isotherms, and cesium sorption was described by Freundlich and Dubinin–Radushkevich isotherms. It was found that SMIA adsorbs both cations and phenolic substances. Kinetic studies indicated that adsorption behavior of phenol obey the pseudo second order rate law. FTIR spectroscopic technique was used to understand the structural changes during modification process with surfactants.  相似文献   

17.
This work focuses on the surface characterization and sorption activity of carbon derived from waste tires. The carbon was prepared by thermal treatment of waste rubber tires, followed by exposure to nitric acid and hydrogen peroxide. The tired‐obtained activated carbon (AC) was evaluated using a variety of techniques. Fourier transform infrared spectroscope and Raman spectra reveal existence of hydroxyl and carboxylic groups on AC surface. Scanning electron microscope and Brunauer–Emmett–Teller revealed the porosity of AC is well developed with mesopore structure (mesopore volume of 0.96 cm3/g). AC was tested for Rhodamine B sorption, and the adsorption kinetics well fitted using a pseudo second‐order kinetic model. The adsorption isotherm data could be well described by the Langmuir model. Semiempirical calculations using Austin Model 1 were performed to explain the adsorption at molecular level. Binding enthalpies in the range of 0.5–4 kcal/mol of four possible scenarios were computed. We believe the combination between experimental work and semiempirical calculations allows for a better understanding of Rhodamine B molecules adsorption on the AC surface. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Two multi‐walled carbon nanotube (MWCNT)‐based nanohybrids, MWCNT–ZnTPP and MWCNT–TPP (TPP=5‐[4‐{2‐(4‐formylphenoxy)‐ ethyloxy}phenyl]‐10,15,20‐triphenylporphyrin, ZnTPP=5‐[4‐{(4‐formylphenyl)ethynyl}phenyl]‐10,15,20‐triphenylporphinatozinc(II)), were prepared directly from pristine MWCNTs through 1,3‐dipolar cycloaddition reactions. Covalent attachment of the porphyrins to the surfaces of the MWCNTs was confirmed by Fourier transform infrared spectroscopy, ultraviolet/visible absorption, fluorescence, Raman, and X‐ray photoelectron spectroscopy, elemental analysis, transmission electron microscopy, and thermogravimetric analysis. Attachment of the porphyrin moieties to the surface of the MWCNTs significantly improves the solubility and ease of processing of these MWCNT–porphyrin composite materials. Z‐scan studies reveal that these MWCNT–porphyrin nanohybrids exhibit enhanced nonlinear optical properties under both nanosecond and picosecond laser pulses at λ=532 nm in comparison with free MWCNTs and the free porphyrin chromophores, whereas superior optical limiting performance was displayed by MWCNT–porphyrin composite materials rather than MWCNTs/ZnTPP and MWCNTs/TPP blends, which is consistent with a remarkable accumulation effect as a result of the covalent linkage between the porphyrin and the MWCNTs.  相似文献   

19.
The study was undertaken to evaluate the feasibility of functionalized multi-walled carbon nanotubes (MWCNTs) for the removal of UO2 2+ from aqueous solutions. The MWCNTs was treated by oxygen plasma and characterized by FTIR and XPS. The characterization indicates that MWCNTs is successfully functionalized of oxygen groups such as –COOH on its surface (denote as P-MWCNTs). The sorption of UO2 2+ from aqueous solution on P-MWCNTs was studied as a function of contact time, solid contents, pH, ionic strength and temperature under ambient conditions using batch experiment. Two simplified kinetic models of pseudo-first-order and pseudo-second-order were tested to determine kinetic parameters such as rate constants, equilibrium sorption capacities and related correlation coefficients for kinetic models of the sorption process. It can be seen that the UO2 2+ sorption on P-MWCNTs could be described more favorably by the pseudo-second-order model. The thermodynamic parameters (?G°, ?S°, ?H°) calculated from the temperature-dependent sorption isotherms indicated that the sorption of UO2 2+ on P-MWCNTs were an endothermic and spontaneous processes. The results of the present study suggest that P-MWCNTs can be used beneficially in treating industrial effluents containing radioactive and heavy metal ions.  相似文献   

20.
Electron transfer and oxygen reduction dynamics at nanostructured iron(II) phthalocyanine/multi‐walled carbon nanotubes composite supported on an edge plane pyrolytic graphite electrode (EPPGE‐MWCNT‐nanoFePc) platform have been reported. All the electrodes showed the category 3 diffusional behaviour according to the Davies–Compton theoretical framework. Both MWCNTs and MWCNT‐nanoFePc showed huge current responses compared to the other electrodes, suggesting the redox processes of trapped redox species within the porous layers of MWCNTs. Electron transfer process is much easier at the EPPGE‐MWCNT and EPPGE‐MWCNT‐nanoFePc compared to the other electrodes. The best response for oxygen reduction reaction was at the EPPGE‐MWCNT‐nanoFePc, yielding a 4‐electron process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号