首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
3‐Alkyl/aryl‐3‐ureido‐1H,3H‐quinoline‐2,4‐diones ( 2 ) and 3a‐alkyl/aryl‐9b‐hydroxy‐3,3a,5,9b‐tetrahydro‐1H‐imidazo[4,5‐c]quinoline‐2,4‐diones ( 3 ) react in boiling concentrated HCl to give 5‐alkyl/aryl‐4‐(2‐aminophenyl)‐1,3‐dihydro‐2H‐imidazol‐2‐ones ( 6 ). The same compounds were prepared by the same procedure from 2‐alkyl/aryl‐3‐ureido‐1H‐indoles ( 4 ), which were obtained from the reaction of 3‐alkyl/aryl‐3‐aminoquinoline‐2,4(1H,3H)‐diones ( 1 ) with 1,3‐diphenylurea or by the transformation of 3a‐alkyl/aryl‐9b‐hydroxy‐3,3a,5,9b‐tetrahydro‐1H‐imidazo[4,5‐c]quinoline‐2,4‐diones ( 3 ) and 5‐alkyl/aryl‐4‐(2‐aminophenyl)‐1,3‐dihydro‐2H‐imidazol‐2‐ones ( 6 ) in boiling AcOH. The latter were converted into 1,3‐bis[2‐(2‐oxo‐2,3‐dihydro‐1H‐imidazol‐4‐yl)phenyl]ureas ( 5 ) by treatment with triphosgene. All compounds were characterized by 1H‐ and 13C‐NMR and IR spectroscopy, as well as atmospheric pressure chemical‐ionisation mass spectra.  相似文献   

2.
The cyclization of the derivatives of 3‐aminotriazole, 2‐(5‐substituted 4H‐1,2,4‐triazol‐3‐ylamino)‐1‐arylethanones and 2‐(4H‐1,2,4‐triazol‐3‐ylthio)‐1‐arylethanones to yield 6‐aryl‐4H‐imidazo[1,2‐b][1,2,4]triazoles and 6‐aryl‐thiazolo[3,2‐b][1,2,4]triazoles has been described.  相似文献   

3.
4‐Arylisocoumarins (=4‐aryl‐1H‐2‐benzopyran‐1‐ones) 6 were prepared from 2‐(1‐aryl‐2‐methoxyethenyl)‐1‐bromobenzenes 1 . Successive treatment of these bromo styrenes with BuLi and 1‐formylpiperidine gave a mixture of (E)‐ and (Z)‐2‐(1‐aryl‐2‐methoxyethenyl)benzaldehydes 2 . Hydrolysis of (Z)‐isomers with conc. HBr, followed by pyridinium chlorochromate (PCC) oxidation of the resulting 1H‐2‐benzopyran‐1‐ol derivatives 4 (and 5 ), afforded the desired products.  相似文献   

4.
The reaction of S‐methylisothiosemicarbazide hydroiodide (=S‐methyl hydrazinecarboximidothioate hydroiodide; 1 ), prepared from thiosemicarbazide by treatment with MeI in EtOH, and aryl isoselenocyanates 5 in CH2Cl2 affords 3H‐1,2,4‐triazole‐3‐selone derivatives 7 in good yield (Scheme 2, Table 1). During attempted crystallization, these products undergo an oxidative dimerization to give the corresponding bis(4H‐1,2,4‐triazol‐3‐yl) diselenides 11 (Scheme 3). The structure of 11a was established by X‐ray crystallography.  相似文献   

5.
The zwitterionic 1 : 1 intermediates generated by addition of Ph3P to acetylenic esters is trapped by 1‐[(aryl)chloromethylene]‐2‐phenylhydrazines (=N‐phenylarenecarbohydrazonoyl chlorides) to yield functionalized 3‐aryl‐1‐phenyl‐1H‐pyrazoles in good yields.  相似文献   

6.
An efficient and convenient synthesis of a new series of 2‐{(6H‐indolo[2,3‐b]quinoxalin‐6‐yl)methyl}‐5‐aryl‐1,3,4‐oxadiazoles from readily available 1,2‐diaminobenzene and isatins under microwave irradiation conditions was disclosed. The 6‐{(5‐aryl‐1,3,4‐oxadiazol‐2‐yl)methyl}‐6H‐indolo[2,3‐b]quinoxalines were also prepared by the thermal cyclo‐condensation reaction of 2‐(6H‐indolo[2,3‐b]quinoxalin‐6‐yl)acetohydrazides with carboxylic acids in refluxing POCl3. The microwave‐assisted synthesis was rapid and resulted in higher yield of the products at lower operating temperature with reduced waste generation in comparison with the thermal reaction protocol.  相似文献   

7.
Reaction of 4H‐pyrimido[2,1‐b]benzothiazole‐2‐thiomethyl‐3‐cyano‐4‐one (1) with hydrazine hydrate/aryl hydrazine/heteryl hydrazine in the presence of anhydrous potassium carbonate and dimethyl formamide afforded 3‐amino‐4‐oxo‐(2H)/aryl/heteryl pyrazolo[3′,4′:4,5]pyrimido[2,1‐b]benzothiazoles in good yield. These pyrazole derivatives on diazotization followed by replacement with hydroxy, chloro, bromo, iodo and on reduction gave the corresponding 3‐substituted derivatives.  相似文献   

8.
An efficient two‐step procedure for the preparation of a new type of 1H‐isoindoles, i.e., N‐(3‐alkyl‐1‐aryl‐ or 1,3‐diaryl‐1H‐isoindol‐1‐yl)‐O‐methylhydroxylamines 5 , from readily available aryl(2‐bromophenyl)methanones 1 has been developed. Aryl(2‐bromophenyl)methanone O‐methyloximes 2 , derived from the corresponding ketones, were treated with BuLi in Et2O at 0° to generate novel lithium compounds, aryl(2‐lithiophenyl)methanone O‐methyloximes 3 , which were allowed to react with nitriles to give the desired products 5 in moderate‐to‐fair yields.  相似文献   

9.
HClO4‐SiO2, efficiently catalyzed the condensation of o‐aminophenols and 2‐bromo‐1‐aryl‐ethanones to yield 3‐aryl‐2H‐benzo[1,4]oxazines in good yields.  相似文献   

10.
A convenient three‐step procedure for the synthesis of three types of 3‐aryl‐2‐sulfanylthienopyridines 4, 8 , and 12 has been developed. The first step of the synthesis of thieno[2,3‐b]pyridine derivatives 4 is the replacement of the halo with a (sulfanylmethyl)sulfanyl group in aryl(2‐halopyridin‐3‐yl)methanones 1 by successive treatment with Na2S?9 H2O and chloromethyl sulfides to give aryl{2‐[(sulfanylmethyl)sulfanyl]pyridin‐3‐yl}methanones 2 . In the second step, these were treated with LDA (LiNiPr2) to give 3‐aryl‐2,3‐dihydro‐2‐sulfanylthieno[2,3‐b]pyridin‐3‐ols 3 , which were dehydrated in the last step with SOCl2 in the presence of pyridine to give the desired products. Similarly, thieno[2,3‐c]pyridine and thieno[3,2‐c]pyridine derivatives, 8 and 12 , respectively, can be prepared from aryl(3‐chloropyridin‐4‐yl)methanones 5 and aryl(4‐chloropyridin‐3‐yl)methanones 9 , respectively.  相似文献   

11.
The reaction of dialkyl acetylenedicarboxylates 4 with 1‐aryl‐2‐[(3‐arylquinoxalin‐2(1H)‐ylidene)ethanones 3 in the presence of Ph3P leads to dialkyl (2Z)‐2‐[(E)‐1‐aryl‐2‐(3‐arylquinoxalin‐2‐yl)ethenyl]but‐2‐enedioates 1 in good yields.  相似文献   

12.
A new and convenient method for the preparation of 2‐aryl‐2,3‐dihydro‐1,8‐naphthyridin‐4(1H)‐ones 4 has been developed. Thus, N‐{3‐[(2E)‐3‐arylprop‐2‐enoyl]pyridin‐2‐yl}‐2,2‐dimethylpropanamides 3 are synthesized from commercially available pyridin‐2‐amine using an easily performed three‐step sequence and are subjected to cyclization with deprotection under acidic conditions in H2O to give the desired products. Similarly, 2‐aryl‐2,3‐dihydro‐1,7‐naphthyridin‐4(1H)‐ones 8 and 2‐aryl‐2,3‐dihydro‐1,6‐naphthyridin‐4(1H)‐ones 12 can be prepared from pyridin‐3‐amine and pyridin‐4‐amine, respectively.  相似文献   

13.
A novel synthetic method for the preparation of 5‐aryl‐7‐(3,5‐dimethyl‐1H‐pyrazol‐1‐yl)‐2‐phenylpyrazolo[1,5‐c]‐pyrimidines and 1‐(5‐aryl‐2‐phenylpyrazolo[1,5‐c]pyrimidin‐7‐yl)‐3‐methyl‐1H‐pyrazol‐5‐ols is provided by condensative cyclization of 5‐aryl‐7‐hydrazino‐2‐phenylpyrazolo[1,5‐c]pyrimidines with 1,3‐dicarbonyl compounds. The study of the more reactive position for electrophilic substitusion reactions on such ring system was also achieved.  相似文献   

14.
A new series of 4‐[3‐alkyl(aryl)(heteroaryl)‐5‐hydroxy‐5‐trifluoromethyl‐4,5‐dihydro‐1H‐pyrazol‐1‐yl]‐7‐chloroquinolines, where [alkyl = CH3; aryl = C6H5, 4‐CH3C6H4, 4‐FC6H4, 4‐ClC6H4, 4‐BrC6H4, 4‐CH3OCgH4, 4‐NO2CgH4, 4‐biphenyl, 1‐naphthyl; heteroaryl = 2‐furyl and 2‐thienyl] has been regiospecifi‐caly obtained from the reaction of 7‐chloro‐4‐hydrazinoquinoline with 4‐substituted‐l,1,1‐trifluoro‐4‐methoxybut‐3‐en‐2‐ones in 61 ‐ 96 % yield. Subsequently, dehydration reaction of 4,5‐dihydropyra‐zolylquinolines under acid conditions furnished a new series of 4‐(3‐substituted‐5‐trifluoromethyl‐1H‐pyra‐zol‐1‐yl)‐7‐chloroquinolines in 73 ‐ 96 % yield.  相似文献   

15.
An efficient method for the synthesis of 2‐aryl‐2,3‐dihydro‐3‐sulfanyl‐1H‐isoindol‐1‐ones 1 via Pummerer‐type cyclization of N‐aryl‐2‐(sulfinylmethyl)benzamides 2 is described. Thus, treatment of these sulfinyl‐benzamides 2 , easily prepared from 2‐(bromomethyl)benzoates 3 in three steps, with Ac2O at ca. 100° resulted in the formation of the desired isoindolones 1 in generally good yields.  相似文献   

16.
A number of new dialkyl 2‐(alkyl or aryl)‐6‐(pyrimidin‐2‐ylthio)‐4‐thioxo‐5,6‐dihydro‐4H‐1,3‐oxazine‐5,6‐dicarboxylate have been prepared in good yield from the multicomponent reaction between 2‐mercaptopyrimidines and acetylenic diesters with acetyl or benzoyl isothiocyanate.  相似文献   

17.
Eighteen novel 2‐(1‐aryl‐5‐methyl‐1,2,3‐triazol‐4‐yl)‐1,3,4‐oxadiazole derivatives and two acylhydrazone intermediate compounds were synthesized by various pathways starting from 1‐aryl‐5‐methyl‐1,2,3‐triazol‐4‐formhydrazide ( 1 ). All products were identified by spectroscopic analysis, and 2‐(1‐aryl‐5‐methyl‐1,2,3‐triazol‐4‐yl)‐5‐benzalthio‐1,3,4‐oxadiazole was further validated by X‐ray crystallography. Results from primary antibacterial activity tests indicated that most of the compounds were effective against E. coli, P. aeruginosa, B. subtilis and S. aureus.  相似文献   

18.
3‐Diethylaminoacrylonitrile ( 1 ) reacts with hydrazonyl halides ( 2a‐d ) to yield 1,3‐disubstituted pyrazole‐4‐carbonitriles 5a‐d. The acetyl 1‐p‐chlorophenylpyrazole‐4‐carbonitrile ( 5a ) condensed with hydrazine hydrate to yield the bishydrazone 10 and with dimethylformamide dimethylacetal to yield 1‐aryl‐3‐(3‐dimethylamino)acryloyl pyrazole‐4‐carbonitrile ( 11 ). This enamine reacts with hydrazine hydrate to yield the pyrazolylpyrazole ( 12 ) and with naphthoquinone to yield the 3‐naphthofuranoyl pyrazole 13. The pyra‐zolyl pyridine derivative 14 was obtained upon treatment of 11 with acetylacetone in the presence of ammonium acetate. Compound 11 was coupled with p‐chlorobenzene diazonium chloride to yield the hydrazone 16 that was coupled further with p‐chlorobenzenediazonium chloride to yield the formazane 18.  相似文献   

19.
The model morpholine‐1‐carbothioic acid (2‐phenyl‐3H‐quinazolin‐4‐ylidene) amide (1) reacts with phenacyl bromides to afford N4‐(5‐aryl‐1,3‐oxathiol‐2‐yliden)‐2‐phenylquinazolin‐4‐amines (4) or N4‐(4,5‐diphenyl‐1,3‐oxathiol‐2‐yliden)‐2‐phenyl‐4‐aminoquinazoline ( 5 ) by a thermodynamically controlled reversible reaction favoring the enolate intermediate, while the 4‐[4‐aryl‐5‐(2‐phenylquinazolin‐4‐yl)‐1,3‐thiazol‐2‐yl]morpholine ( 8 ) was produced by a kinetically controlled reaction favoring the C‐anion intermediate. 1H nmr, 13C nmr, ir, mass spectroscopy and x‐ray identified compounds ( 4 ), ( 5 ) and ( 8 ).  相似文献   

20.
1‐Bromoallyl bromides are carbonylatively cyclized with anilines under carbon monoxide pressure in DMF in the presence of a catalytic amount of a palladium catalyst along with a base to give the corresponding 1‐aryl‐1H‐pyrrol‐2(5H)‐ones in moderate to good yield. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号