首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High energy‐density lithium‐ion batteries are in demand for portable electronic devices and electrical vehicles. Since the energy density of the batteries relies heavily on the cathode material used, major research efforts have been made to develop alternative cathode materials with a higher degree of lithium utilization and specific energy density. In particular, layered, Ni‐rich, lithium transition‐metal oxides can deliver higher capacity at lower cost than the conventional LiCoO2. However, for these Ni‐rich compounds there are still several problems associated with their cycle life, thermal stability, and safety. Herein the performance enhancement of Ni‐rich cathode materials through structure tuning or interface engineering is summarized. The underlying mechanisms and remaining challenges will also be discussed.  相似文献   

2.
The long‐standing challenge associated with capacity fading of spinel LiMn2O4 cathode material for lithium‐ion batteries is investigated. Single‐crystalline spinel LiMn2O4 nanorods were successfully synthesized by a template‐engaged method. Porous Mn3O4 nanorods were used as self‐sacrificial templates, into which LiOH was infiltrated by a vacuum‐assisted impregnation route. When used as cathode materials for lithium‐ion batteries, the spinel LiMn2O4 nanorods exhibited superior long cycle life owing to the one‐dimensional nanorod structure, single‐crystallinity, and Li‐rich effect. LiMn2O4 nanorods retained 95.6 % of the initial capacity after 1000 cycles at 3C rate. In particular, the nanorod morphology of the spinel LiMn2O4 was well‐preserved after a long‐term cycling, suggesting the ultrahigh structural stability of the single crystalline spinel LiMn2O4 nanorods. This result shows the promising applications of single‐crystalline spinel LiMn2O4 nanorods as cathode materials for lithium‐ion batteries with high rate capability and long cycle life.  相似文献   

3.
Surface modification of electrode active materials has garnered considerable attention as a facile way to meet stringent requirements of advanced lithium‐ion batteries. Here, we demonstrated a new coating strategy based on dual layers comprising antimony‐doped tin oxide (ATO) nanoparticles and carbon. The ATO nanoparticles are synthesized via a hydrothermal method and act as electronically conductive/electrochemically active materials. The as‐synthesized ATO nanoparticles are introduced on natural graphite along with citric acid used as a carbon precursor. After carbonization, the carbon/ATO‐decorated natural graphite (c/ATO‐NG) is produced. In the (carbon/ATO) dual‐layer coating, the ATO nanoparticles coupled with the carbon layer exhibit unprecedented synergistic effects. The resultant c/ATO‐NG anode materials display significant improvements in capacity (530 mA h g?1), cycling retention (capacity retention of 98.1 % after 50 cycles at a rate of C/5), and low electrode swelling (volume expansion of 38 % after 100 cycles) which outperform that of typical graphite materials. Furthermore, a full‐cell consisting of a c/ATO‐NG anode and an LiNi0.5Mn1.5O4 cathode presents excellent cycle retention (capacity retention of >80 % after 100 cycles). We envision that the dual‐layer coating concept proposed herein opens a new route toward high‐performance anode materials for lithium‐ion batteries.  相似文献   

4.
The understanding of lithium‐ion migration through the bulk crystal structure is crucial in the search for novel battery materials with improved properties for lithium‐ion conduction. In this paper, procrystal calculations are introduced as a fast, intuitive way of mapping possible migration pathways, and the method is applied to a broad range of lithium‐containing materials, including the well‐known battery cathode materials LiCoO2, LiMn2O4, and LiFePO4. The outcome is compared with both experimental and theoretical studies, as well as the bond valence site energy approach, and the results show that the method is not only a strong, qualitative visualization tool, but also provides a quantitative measure of electron‐density thresholds for migration, which are correlated with theoretically obtained activation energies. In the future, the method may be used to guide experimental and theoretical research towards materials with potentially high ionic conductivity, reducing the time spent investigating nonpromising materials with advanced theoretical methods.  相似文献   

5.
All‐solid‐state sodium batteries (ASSSBs) with nonflammable electrolytes and ubiquitous sodium resource are a promising solution to the safety and cost concerns for lithium‐ion batteries. However, the intrinsic mismatch between low anodic decomposition potential of superionic sulfide electrolytes and high operating potentials of sodium‐ion cathodes leads to a volatile cathode–electrolyte interface and undesirable cell performance. Here we report a high‐capacity organic cathode, Na4C6O6, that is chemically and electrochemically compatible with sulfide electrolytes. A bulk‐type ASSSB shows high specific capacity (184 mAh g?1) and one of the highest specific energies (395 Wh kg?1) among intercalation compound‐based ASSSBs. The capacity retentions of 76 % after 100 cycles at 0.1 C and 70 % after 400 cycles at 0.2 C represent the record stability for ASSSBs. Additionally, Na4C6O6 functions as a capable anode material, enabling a symmetric all‐organic ASSSB with Na4C6O6 as both cathode and anode materials.  相似文献   

6.
Lithium metal is an ideal electrode material for future rechargeable lithium metal batteries. However, the widespread deployment of metallic lithium anode is significantly hindered by its dendritic growth and low Coulombic efficiency, especially in ester solvents. Herein, by rationally manipulating the electrolyte solvation structure with a high donor number solvent, enhancement of the solubility of lithium nitrate in an ester‐based electrolyte is successfully demonstrated, which enables high‐voltage lithium metal batteries. Remarkably, the electrolyte with a high concentration of LiNO3 additive presents an excellent Coulombic efficiency up to 98.8 % during stable galvanostatic lithium plating/stripping cycles. A full‐cell lithium metal battery with a lithium nickel manganese cobalt oxide cathode exhibits a stable cycling performance showing limited capacity decay. This approach provides an effective electrolyte manipulation strategy to develop high‐voltage lithium metal batteries.  相似文献   

7.
CoFe2O4/multiwalled carbon nanotubes (MWCNTs) hybrid materials were synthesized by a hydrothermal method. Field emission scanning electron microscopy and transmission electron microscopy analysis confirmed the morphology of the as‐prepared hybrid material resembling wintersweet flower “buds on branches”, in which CoFe2O4 nanoclusters, consisting of nanocrystals with a size of 5–10 nm, are anchored along carbon nanotubes. When applied as an anode material in lithium ion batteries, the CoFe2O4/MWCNTs hybrid material exhibited a high performance for reversible lithium storage. In particular, the hybrid anode material delivered reversible lithium storage capacities of 809, 765, 539, and 359 mA h g?1 at current densities of 180, 450, 900, and 1800 mA g?1, respectively. The superior performance of CoFe2O4/MWCNTs hybrid materials could be ascribed to the synergistic pinning effect of the wintersweet‐flower‐like nanoarchitecture. This strategy could also be applied to synthesize other metal oxide/CNTs hybrid materials as high‐capacity anode materials for lithium ion batteries.  相似文献   

8.
A templating method is developed to produce porous nanocrystalline anatase materials for negative electrodes in lithium‐ion batteries (LIBs). Amphiphilic diblock copolymers are used to generate template films with phase‐separated internal structure. Subsequent swelling with acidified titanium(IV) bis(ammonium lactato) dihydroxide (TALH) solution yielded structured hybrid films. Upon heating, the formation of TiO2 nanocrystals is induced, resulting in a three‐dimensional mesoporous structure directed by the bulk morphology of the polymer template. In comparison to commercial nanosized anatase, the structured anatase shows significant performance improvements in lithium‐ion coin cell batteries in terms of capacity, stability, and rate capability. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1890–1896  相似文献   

9.
The increasing use of lithium‐ion batteries (LIBs) in high‐power applications requires improvement of their high‐temperature electrochemical performance, including their cyclability and rate capability. Spinel lithium manganese oxide (LiMn2O4) is a promising cathode material because of its high stability and abundance. However, it exhibits poor cycling performance at high temperatures owing to Mn dissolution. Herein we show that when stoichiometric lithium manganese oxide is coated with highly doped spinels, the resulting epitaxial coating has a hierarchical atomic structure consisting of cubic‐spinel, tetragonal‐spinel, and layered structures, and no interfacial phase is formed. In a practical application of the coating to doped spinel, the material retained 90 % of its capacity after 800 cycles at 60 °C. Thus, the formation of an epitaxial coating with a hierarchical atomic structure could enhance the electrochemical performance of LIB cathode materials while preventing large losses in capacity.  相似文献   

10.
Tavorite‐structured oxyphosphates, fluorophosphates, oxysulfates, and fluorosulfates are evaluated for use as cathode materials in lithium ion batteries and activation energies for lithium diffusion through LiVO(PO4), LiV(PO4)F, and LiFe(SO4)F are calculated.  相似文献   

11.
Improving the preparation technology and electrochemical performance of cathode materials for lithium ion batteries is a current major focus of research and development in the areas of materials, power sources and chemistry. Sol-gel methods are promising candidates to prepare cathode materials owing to their evident advantages over traditional methods. In this paper, the latest progress on the preparation of cathode materials such as lithium cobalt oxides, lithium nickel oxides, lithium manganese oxides, vanadium oxides and other compounds by sol-gel methods is reviewed, and further directions are pointed out. The prepared products provide better electrochemical performance, including reversible capacity, cycling behavior and rate capability in comparison with those from traditional solid-state reactions. The main reasons are due to the following several factors: homogeneous mixing at the atomic or molecular level, lower synthesis temperature, shorter heating time, better crystallinity, uniform particle distribution and smaller particle size at the nanometer level. As a result, the structural stability of the cathode materials and lithium intercalation and deintercalation behavior are much improved. These methods can also be used to prepare novel types of cathode materials such as nanowires of LiCoO2 and nanotubes of V2O5, which cannot be easily obtained by traditional methods. With further development and application of sol-gel methods, better and new cathode materials will become available and the advance of lithium ion batteries will be greatly promoted.  相似文献   

12.
The accelerating development of technologies requires a significant energy consumption, and consequently the demand for advanced energy storage devices is increasing at a high rate. In the last two decades, lithium‐ion batteries have been the most robust technology, supplying high energy and power density. Improving cathode materials is one of the ways to satisfy the need for even better batteries. Therefore developing new types of positive electrode materials by increasing cell voltage and capacity with stability is the best way towards the next‐generation Li rechargeable batteries. To achieve this goal, understanding the principles of the materials and recognizing the problems confronting the state‐of‐the‐art cathode materials are essential prerequisites. This Review presents various high‐energy cathode materials which can be used to build next‐generation lithium‐ion batteries. It includes nickel and lithium‐rich layered oxide materials, high voltage spinel oxides, polyanion, cation disordered rock‐salt oxides and conversion materials. Particular emphasis is given to the general reaction and degradation mechanisms during the operation as well as the main challenges and strategies to overcome the drawbacks of these materials.  相似文献   

13.
Lithium‐rich layered oxides are promising cathode materials for lithium‐ion batteries and exhibit a high reversible capacity exceeding 250 mAh g−1. However, voltage fade is the major problem that needs to be overcome before they can find practical applications. Here, Li1.2Mn0.54Ni0.13Co0.13O2 (LLMO) oxides are subjected to nanoscale LiFePO4 (LFP) surface modification. The resulting materials combine the advantages of both bulk doping and surface coating as the LLMO crystal structure is stabilized through cationic doping, and the LLMO cathode materials are protected from corrosion induced by organic electrolytes. An LLMO cathode modified with 5 wt % LFP (LLMO–LFP5) demonstrated suppressed voltage fade and a discharge capacity of 282.8 mAh g−1 at 0.1 C with a capacity retention of 98.1 % after 120 cycles. Moreover, the nanoscale LFP layers incorporated into the LLMO surfaces can effectively maintain the lithium‐ion and charge transport channels, and the LLMO–LFP5 cathode demonstrated an excellent rate capacity.  相似文献   

14.
Ni‐rich cathode materials have become one of the most promising cathode materials for advanced high‐energy Li‐ion batteries (LIBs) owing to their high specific capacity. However, Ni‐rich cathode materials are sensitive to the trace H2O and CO2 in the air, and tend to react with them to generate LiOH and Li2CO3 at the particle surface region (named residual lithium compounds, labeled as RLCs). The RLCs will deteriorate the comprehensive performances of Ni‐rich cathode materials and make trouble in the subsequent manufacturing process of electrode, including causing low initial coulombic efficiency and poor storage property, bringing about potential safety hazards, and gelatinizing the electrode slurry. Therefore, it is of considerable significance to remove the RLCs. Researchers have done a lot of work on the corresponding field, such as exploring the formation mechanism and elimination methods. This paper investigates the origin of the surface residual lithium compounds on Ni‐rich cathode materials, analyzes their adverse effects on the performance and the subsequent electrode production process, and summarizes various kinds of feasible methods for removing the RLCs. Finally, we propose a new research direction of eliminating the lithium residuals after comparing and summing up the above. We hope this work can provide a reference for alleviating the adverse effects of residual lithium compounds for Ni‐rich cathode materials’ industrial production.  相似文献   

15.
Sodium‐ion batteries are a very promising alternative to lithium‐ion batteries because of their reliance on an abundant supply of sodium salts, environmental benignity, and low cost. However, the low rate capability and poor long‐term stability still hinder their practical application. A cathode material, formed of RuO2‐coated Na3V2O2(PO4)2F nanowires, has a 50 nm diameter with the space group of I4/mmm. When used as a cathode material for Na‐ion batteries, a reversible capacity of 120 mAh g?1 at 1 C and 95 mAh g?1 at 20 C can be achieved after 1000 charge–discharge cycles. The ultrahigh rate capability and enhanced cycling stability are comparable with high performance lithium cathodes. Combining first principles computational investigation with experimental observations, the excellent performance can be attributed to the uniform and highly conductive RuO2 coating and the preferred growth of the (002) plane in the Na3V2O2(PO4)2F nanowires.  相似文献   

16.
Electrospinning, as a novel nontextile filament technology, is an important method to prepare continuous nanofibers and has shown its remarkable advantages, such as a broadly applicable material system, controllable fiber size and structure, and simple process. Electrospun nanofiber membranes prepared by electrospinning have shown promising applications in many fields, such as supercapacitors, lithium‐ion batteries, and sodium‐ion batteries, owing to their large specific surface area and adjustable network pore structure. The principle of electrospinning and key points relevant to its usage in the preparation of high‐performance electrochemical energy storage materials are reviewed herein based on recent publications, particularly focusing on research progress of relative materials. Also, this review describes a distinctive conclusion and perspective on the future challenges and opportunities in electrospun nanomaterials.  相似文献   

17.
Of the various beyond‐lithium‐ion battery technologies, lithium–sulfur (Li–S) batteries have an appealing theoretical energy density and are being intensely investigated as next‐generation rechargeable lithium‐metal batteries. However, the stability of the lithium‐metal (Li°) anode is among the most urgent challenges that need to be addressed to ensure the long‐term stability of Li–S batteries. Herein, we report lithium azide (LiN3) as a novel electrolyte additive for all‐solid‐state Li–S batteries (ASSLSBs). It results in the formation of a thin, compact and highly conductive passivation layer on the Li° anode, thereby avoiding dendrite formation, and polysulfide shuttling. It greatly enhances the cycling performance, Coulombic and energy efficiencies of ASSLSBs, outperforming the state‐of‐the‐art additive lithium nitrate (LiNO3).  相似文献   

18.
Lithium cobalt oxide, LiCoO2, has been the most widely used cathode material in commercial lithium ion batteries. Nevertheless, cobalt has economic and environmental problems that leave the door open to exploit alternative cathode materials, among which LiNi x CoyMn1 − x − y O2 may have improved performances, such as thermal stability, due to the synergistic effect of the three ions. Recently, intensive effort has been directed towards the development of LiNi x Co y Mn1 − x − y O2 as a possible replacement for LiCoO2. Recent advances in layered LiNi x CoyMn1 − x − y O2 cathode materials are summarized in this paper. The preparation and the performance are reviewed, and the future promising cathode materials are also prospected.  相似文献   

19.
Spinel LiNi0.5Mn1.5O4 (LNMO) is a promising cathode candidate for the next‐generation high energy‐density lithium‐ion batteries (LIBs). Unfortunately, the application of LNMO is hindered by its poor cycle stability. Now, site‐selectively doped LNMO electrode is prepared with exceptional durability. In this work, Mg is selectively doped onto both tetrahedral (8a) and octahedral (16c) sites in the Fd m structure. This site‐selective doping not only suppresses unfavorable two‐phase reactions and stabilizes the LNMO structure against structural deformation, but also mitigates the dissolution of Mn during cycling. Mg‐doped LNMOs exhibit extraordinarily stable electrochemical performance in both half‐cells and prototype full‐batteries with novel TiNb2O7 counter‐electrodes. This work pioneers an atomic‐doping engineering strategy for electrode materials that could be extended to other energy materials to create high‐performance devices.  相似文献   

20.
Secondary Li?ion batteries have been paid attention to wide‐range applications of power source for the portable electronics, electric vehicle, and electric storage reservoir. Generally, lithium‐ion batteries are comprised of four components including anode, cathode, electrolyte and separator. Although separators do not take part in the electrochemical reactions in a lithium‐ion (Li?ion) battery, they conduct the critical functions of physically separating the positive and negative electrodes to prevent electrical short circuit while permitting the free flow of lithium ions through the liquid electrolyte that fill in their open porous structure. Hence, the separator is directly related to the safety and the power performance of the battery. Among a number of separators developed thus far, polyethylene (PE) and polypropylene (PP) porous membrane separators have been the most dominant ones for commercial Li?ion batteries over the decades because of their superior properties such as cost‐efficiency, good mechanical strength and pore structure, electrochemical stability, and thermal shutdown properties. However, there are main issues for vehicular storage, such as nonpolarity, low surface energy and poor thermal stability, although the polyolefin separators have proven dependable in portable applications. Hence, in this review, we decide to provide an overview of the types of polyolefin microporous separators utilized in Li?ion batteries and the methods employed to modify their surface in detail. The remarkable results demonstrate that extraordinary properties can be exhibited by mono‐ and multilayer polyolefin separators if they are modified using suitable methods and materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号