首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Porous structure Li[Ni1/3Co1/3Mn1/3]O2 has been synthesized via a facile carbonate co‐precipitation method using Li2CO3 as template and lithium‐source. The physical and electrochemical properties of the materials were examined by many characterizations including TGA, XRD, SEM, EDS, TEM, BET, CV, EIS and galvanostatic charge‐discharge cycling. The results indicate that the as‐synthesized materials by this novel method own a well‐ordered layered structure α‐NaFeO2 [space group: R‐3m(166)], porous morphology, and an average primary particle size of about 150 nm. The porous material exhibits larger specific surface area and delivers a high initial capacity of 169.9 mAh·g?1 at 0.1 C (1 C=180 mA·g?1) between 2.7 and 4.3 V, and 126.4, 115.7 mAh·g?1 are still respectively reached at high rate of 10 C and 20 C. After 100 charge‐discharge cycles at 1 C, the capacity retention is 93.3%, indicating the excellent cycling stability.  相似文献   

2.
Rational composite materials made from transition metal sulfides and reduced graphene oxide (rGO) are highly desirable for designing high‐performance lithium‐ion batteries (LIBs). Here, rGO‐coated or sandwiched CoSx composites are fabricated through facile thermal sulfurization of metal–organic framework/GO precursors. By scrupulously changing the proportion of Co2+ and organic ligands and the solvent of the reaction system, we can tune the forms of GO as either a coating or a supporting layer. Upon testing as anode materials for LIBs, the as‐prepared CoSx‐rGO‐CoSx and rGO@CoSx composites demonstrate brilliant electrochemical performances such as high initial specific capacities of 1248 and 1320 mA h g?1, respectively, at a current density of 100 mA g?1, and stable cycling abilities of 670 and 613 mA h g?1, respectively, after 100 charge/discharge cycles, as well as superior rate capabilities. The excellent electrical conductivity and porous structure of the CoSx/rGO composites can promote Li+ transfer and mitigate internal stress during the charge/discharge process, thus significantly improving the electrochemical performance of electrode materials.  相似文献   

3.
We report the synthesis and anode application for sodium‐ion batteries (SIBs) of WS2 nanowires (WS2 NWs). WS2 NWs with very thin diameter of ≈25 nm and expanded interlayer spacing of 0.83 nm were prepared by using a facile solvothermal method followed by a heat treatment. The as‐prepared WS2 NWs were evaluated as anode materials of SIBs in two potential windows of 0.01–2.5 V and 0.5–3 V. WS2 NWs displayed a remarkable capacity (605.3 mA h g?1 at 100 mA g?1) but with irreversible conversion reaction in the potential window of 0.01–2.5 V. In comparison, WS2 NWs showed a reversible intercalation mechanism in the potential window of 0.5–3 V, in which the nanowire‐framework is well maintained. In the latter case, the interlayers of WS2 are gradually expanded and exfoliated during repeated charge–discharge cycling. This not only provides more active sites and open channels for the intercalation of Na+ but also facilitates the electronic and ionic diffusion. Therefore, WS2 NWs exhibited an ultra‐long cycle life with high capacity and rate capability in the potential window of 0.5–3 V. This study shows that WS2 NWs are promising as the anode materials of room‐temperature SIBs.  相似文献   

4.
Cu3V2O8 nanoparticles with particle sizes of 40–50 nm have been prepared by the co‐precipitation method. The Cu3V2O8 electrode delivers a discharge capacity of 462 mA h g?1 for the first 10 cycles and then the specific capacity, surprisingly, increases to 773 mA h g?1 after 50 cycles, possibly as a result of extra lithium interfacial storage through the reversible formation/decomposition of a solid electrolyte interface (SEI) film. In addition, the electrode shows good rate capability with discharge capacities of 218 mA h g?1 under current densities of 1000 mA g?1. Moreover, the lithium storage mechanism for Cu3V2O8 nanoparticles is explained on the basis of ex situ X‐ray diffraction data and high‐resolution transmission electron microscopy analyses at different charge/discharge depths. It was evidenced that Cu3V2O8 decomposes into copper metal and Li3VO4 on being initially discharged to 0.01 V, and the Li3VO4 is then likely to act as the host for lithium ions in subsequent cycles by means of the intercalation mechanism. Such an “in situ” compositing phenomenon during the electrochemical processes is novel and provides a very useful insight into the design of new anode materials for application in lithium‐ion batteries.  相似文献   

5.
以水杨酸为模板剂和还原剂,采用水热法制备得到了一种MoO3纳米带/RGO复合材料。利用XRD、SEM、TEM、拉曼光谱、恒流充放电、交流阻抗等手段对样品的结构、形貌以及电化学性能进行表征。测试结果表明,MoO3纳米带/RGO复合材料作为锂离子电池负极材料,在50mA·g-1的电流密度下可逆比容量为1000mAh·g-1,循环50次后比容量还保持在950mAh·g-1,相比于MoO3纳米带其容量保持能力和循环性能得到了显著改善。  相似文献   

6.
Silver molybdate, Ag2Mo2O7, has been prepared by a conventional solid‐state reaction. Its electrochemical properties as an anode material for sodium‐ion batteries (SIBs) have been comprehensively examined by means of galvanostatic charge–discharge cycling, cyclic voltammetry, and rate performance measurements. At operating voltages between 3.0 and 0.01 V, the electrode delivered a reversible capacity of nearly 190 mA h g?1 at a current density of 20 mA g?1 after 70 cycles. Ag2Mo2O7 also demonstrated a good rate capability and long‐term cycle stability, the capacity reaching almost 100 mA h g?1 at a current density of 500 mA g?1, with a capacity retention of 55 % over 1000 cycles. Moreover, the sodium storage process of Ag2Mo2O7 has been investigated by means of ex situ XRD, Raman spectroscopy, and HRTEM. Interestingly, the anode decomposes into Ag metal and Na2MoO4 during the initial discharge process, and then Na+ ions are considered to be inserted into/extracted from the Na2MoO4 lattice in the subsequent cycles governed by an intercalation/deintercalation mechanism. Ex situ HRTEM images revealed that Ag metal not only remains unchanged during the sodiation/desodiation processes, but is well dispersed throughout the amorphous matrix, thereby greatly improving the electronic conductivity of the working electrode. The “in situ” decomposition behavior of Ag2Mo2O7 is distinct from that of chemically synthesized, metal‐nanoparticle‐coated electrode materials, and provides strong supplementary insight into the mechanism of such new anode materials for SIBs and may set a precedent for the design of further materials.  相似文献   

7.
以水杨酸为模板剂和还原剂,采用水热法制备得到了一种MoO3纳米带/RGO复合材料。利用XRD、SEM、TEM、拉曼光谱、恒流充放电、交流阻抗等手段对样品的结构、形貌以及电化学性能进行表征。测试结果表明,MoO3纳米带/RGO复合材料作为锂离子电池负极材料,在50 m A·g-1的电流密度下可逆比容量为1 000 m Ah·g-1,循环50次后比容量还保持在950 m Ah·g-1,相比于MoO3纳米带其容量保持能力和循环性能得到了显著改善。  相似文献   

8.
We report a γ-ray irradiation reduction method to prepare MnO/reduced graphene oxide (rGO) nanocomposite for the anode of lithium ion batteries. γ-Ray irradiation provides a clean way to generate homogeneously dispersed MnO nanoparticles with finely tuned size on rGO surface without the use of surfactant. The MnO/rGO composite enables a fully charge/discharge in 2 min to gain a reversible specific capacity of 546 (mA·h)/g which is 45% higher than the theoretical value of commercial graphite anode.  相似文献   

9.
The mechanism of lithium ion intercalation/de-intercalation into LiNi1/3Mn1/3Co1/3O2 cathode material prepared by reactions under autogenic pressure at elevated temperatures method is investigated both in aqueous and non-aqueous electrolytes using electrochemical impedance spectroscopy (EIS) technique. In accordance with the results obtained an equivalent circuit is used to fit the impedance spectra. The kinetic parameters of intercalation/de-intercalation processes are evaluated with the help of the same equivalent circuit. The dependence of charge transfer resistance (R ct), exchange current (I 0), double layer capacitance (C dl), Warburg resistance (Z w), and chemical diffusion coefficient (D Li+) on potential during intercalation/de-intercalation is studied. The behavior of EIS spectra and its potential dependence is studied to get the kinetics of the mechanism of intercalation/de-intercalation processes, which cannot be obtained from the usual electrochemical studies like cyclic voltammetry. The results indicate that intercalation and de-intercalation of lithium ions in aqueous solution follows almost similar mechanism in non-aqueous system. D Li+ values are in the range of 10?8 to 10?14?cm2?s?1 in aqueous 5?M LiNO3 and that in non-aqueous 1?M LiAsF6/EC+DMC electrolyte is in the order of 10?12?cm2?s?1 during the intercalation/de-intercalation processes. A typical cell LiTi2 (PO4)3/5?M LiNO3/LiNi1/3Mn1/3Co1/3O2 is constructed and the cycling stability is compared to that with an organic electrolyte.  相似文献   

10.
We describe in this paper the lithium insertion/extraction behavior of a new NASICON type Li2Co2(MoO4)3 at a low potential and explored the possibility of considering this new oxyanion material as anode for lithium-ion batteries for the first time. Li2Co2(MoO4)3 was synthesized by a soft-combustion glycine-nitrate low temperature protocol. Test cells were assembled using composite Li2Co2(MoO4)3 as the negative electrode material and a thin lithium foil as the positive electrode material separated by a microporous polypropylene (Celgard® membrane) soaked in aprotic organic electrolyte (1 M LiPF6 in EC/DMC). Electrochemical discharge down to 0.001 V from OCV (~3.5 V) revealed that about 35 Li+ could possibly be inserted into Li2Co2(MoO4)3 during the first discharge (reduction) corresponding to a specific capacity amounting to 1,500 mAh g?1. This is roughly fourfold higher compared to that of frequently used graphite electrodes. However, about 24 Li+ could be extracted during the first charge. It is interesting to note that the same amount of Li+ could be inserted during the second Li+ insertion process (second cycle discharge) giving rise to a second discharge capacity of 1,070 mAh g?1. It was also observed that a major portion of lithium intake occurs below 1.0 V vs Li/Li+, which is typical of anodes being used in lithium-ion batteries.  相似文献   

11.
A simple one‐pot synthesis of metal selenide/reduced graphene oxide (rGO) composite powders for application as anode materials in sodium‐ion batteries was developed. The detailed mechanism of formation of the CoSex–rGO composite powders that were selected as the first target material in the spray pyrolysis process was studied. The crumple‐structured CoSex–rGO composite powders prepared by spray pyrolysis at 800 °C had a crystal structure consisting mainly of Co0.85Se with a minor phase of CoSe2. The bare CoSex powders prepared for comparison had a spherical shape and hollow structure. The discharge capacities of the CoSex–rGO composite and bare CoSex powders in the 50th cycle at a constant current density of 0.3 A g?1 were 420 and 215 mA h g?1, respectively, and their capacity retentions measured from the second cycle were 80 and 46 %, respectively. The high structural stability of the CoSex–rGO composite powders for repeated sodium‐ion charge and discharge processes resulted in superior sodium‐ion storage properties compared to those of the bare CoSex powders.  相似文献   

12.
Nanostructured hybrid metal sulfides have attracted intensive attention due to their fascinating properties that are unattainable by the single‐phased counterpart. Herein, we report an efficient approach to construct cobalt sulfide/molybdenum disulfide (Co9S8/MoS2) wrapped with reduced graphene oxide (rGO). The unique structures constructed by ultrathin nanosheets and synergetic effects benefitting from bimetallic sulfides provide improved lithium ions reaction kinetics, and they retain good structural integrity. Interestingly, the conductive rGO can facilitate electron transfer, increase the electronic conductivity and accommodate the strain during cycling. When evaluated as anode materials for lithium‐ion batteries (LIBs), the resultant reduced graphene oxide‐coated cobalt sulfide/molybdenum disulfide (Co9S8/MoS2@rGO) nanotubes deliver high specific capacities of 1140, 948, 897, 852, 820, 798 and 784 mAh g?1 at the various discharging current densities of 0.2, 0.5, 1, 2, 3, 4 and 5 A g?1, respectively. In addition, they can maintain an excellent cycle stability with a discharge capacity of 807 mAh g?1 at 0.2 A g?1 after 70 cycles, 787 mAh g?1 at 1 A g?1 after 180 cycles and 541 mAh g?1 at 2 A g?1 after 200 cycles. The proposed method may offer fundamental understanding for the rational design of other hybrid functional composites with high Li‐storage properties.  相似文献   

13.
The ionic conductivity and small size of the hydrogen ion make it an ideal charge carrier for hydrogen‐ion energy storage (HES); however, high‐voltage two‐electrode configurations are difficult to construct as the result of the lack of efficient cathodic energy storage. Herein, the high potential fast anionic redox at the cathode of reduced graphene oxide (rGO) was applied by introducing redox additive electrolytes. By coupling the storing hydrogen ion in the Ti3C2Tx at the anode, a HES with a voltage of 1.8 V and a plateau voltage at 1.2 V was constructed. Compared with 2.2 Wh kg?1 for the low‐voltage Ti3C2Tx//Ti3C2Tx, the specific energy of asymmetric rGO//Ti3C2Tx reaches 34.4 Wh kg?1. Furthermore, it possesses an energy density of 23.7 Wh kg?1 at high power density of 22.5 kW kg?1. Thus, this study provides a novel guideline for constructing high‐voltage fast HES full cells.  相似文献   

14.
We demonstrate a unique synthetic route for oxygen‐deficient mesoporous TiOx by a redox–transmetalation process by using Zn metal as the reducing agent. The as‐obtained materials have significantly enhanced electronic conductivity; 20 times higher than that of as‐synthesized TiO2 material. Moreover, electrochemical impedance spectroscopy (EIS) and galvanostatic intermittent titration technique (GITT) measurements are performed to validate the low charge carrier resistance of the oxygen‐deficient TiOx. The resulting oxygen‐deficient TiOx battery anode exhibits a high reversible capacity (~180 mA h g?1 at a discharge/charge rate of 1 C/1 C after 400 cycles) and an excellent rate capability (~90 mA h g?1 even at a rate of 10 C). Also, the full cell, which is coupled with a LiCoO2 cathode material, exhibits an outstanding rate capability (>75 mA h g?1 at a rate of 3.0 C) and maintains a reversible capacity of over 100 mA h g?1 at a discharge/charge of 1 C/1 C for 300 cycles.  相似文献   

15.
MoS2 nanoflowers with expanded interlayer spacing of the (002) plane were synthesized and used as high‐performance anode in Na‐ion batteries. By controlling the cut‐off voltage to the range of 0.4–3 V, an intercalation mechanism rather than a conversion reaction is taking place. The MoS2 nanoflower electrode shows high discharge capacities of 350 mAh g?1 at 0.05 A g?1, 300 mAh g?1 at 1 A g?1, and 195 mAh g?1 at 10 A g?1. An initial capacity increase with cycling is caused by peeling off MoS2 layers, which produces more active sites for Na+ storage. The stripping of MoS2 layers occurring in charge/discharge cycling contributes to the enhanced kinetics and low energy barrier for the intercalation of Na+ ions. The electrochemical reaction is mainly controlled by the capacitive process, which facilitates the high‐rate capability. Therefore, MoS2 nanoflowers with expanded interlayers hold promise for rechargeable Na‐ion batteries.  相似文献   

16.
Molybdenum trioxide (MoO3) films were deposited on ITO/Glass substrates by the sol–gel method using a spin-coating technique and heat treated at various temperatures under different ambient atmosphere. Effects of the process parameters on the electrochromic properties of MoO3 films were studied using cyclic voltammetry (CV) in a propylene carbonate (PC) non-aqueous solution containing 1 M lithium perchlorate (LiClO4). Electrochromic MoO3 film on lithium intercalation was investigated by in-situ transmittance measurement during the CV process. The MoO3 films showed reversible recharge ability on Li+/e intercalation/deintercalation. Experimental results revealed that the heat-treatment temperature, the ambient atmosphere, and the thickness will have the string influence on the electrochromic properties of MoO3 thin films. X-ray diffraction (XRD) results show that the amorphous MoO3 films can be obtained with the heat-treatment temperature below 300 °C in O2 ambient atmosphere. The optimum electrochromic MoO3 film, with a thickness of 130 nm, exhibits a maximum transmittance variation (ΔT%) of 30.9%, an optical density change (ΔOD) of 0.213, an intercalation charge (Q) of 8.47 mC/cm2, an insertion coefficient x in Li x MoO3 was 0.21 and a coloration efficiency (η) of 25.1 cm2/C between the colored and bleached states at a wavelength (λ) of 550 nm.  相似文献   

17.
The crystal structure and electrochemical intercalation kinetics of spinel LiNi0.5Mn1.5O4 such as the resistance of a solid electrolyte interphase (SEI) film, charge transfer resistance (R ct), surface layer capacitance, exchange current density (i 0), and chemical diffusion coefficient are evaluated by Fourier transform infrared (FT-IR) and electrochemical impedance spectroscopy (EIS), respectively. FT-IR shows that LiNi0.5Mn1.5O4 thus obtained has a cubic spinel structure, which can be indexed in a space group of Fd3m with a disordering distribution of Ni. EIS indicates that R s is almost a constant at different states of charge. The thickness of SEI film increases with increasing of the cell voltage. R ct values evidently decreases when lithium ions deintercalated from the cathode in the voltage range from OCV to 4.6 V, and R ct value increases with increasing potential of deintercalation over 4.7 V. i 0 varies between 0.2 and 1.6 mA cm?2, and the solid phase diffusion coefficient of Li+ changed depending on the electrode potential in the range of 10?11–10?9 cm2 s?1.  相似文献   

18.
The sodium‐ion storage properties of FeS–reduced graphene oxide (rGO) and Fe3O4‐rGO composite powders with crumpled structures have been studied. The Fe3O4‐rGO composite powder, prepared by one‐pot spray pyrolysis, could be transformed to an FeS‐rGO composite powder through a simple sulfidation treatment. The mean size of the Fe3O4 nanocrystals in the Fe3O4‐rGO composite powder was 4.4 nm. After sulfidation, FeS nanocrystals of size several hundred nanometers were confined within the crumpled structure of the rGO matrix. The initial discharge capacities of the FeS‐rGO and Fe3O4‐rGO composite powders were 740 and 442 mA h g?1, and their initial charge capacities were 530 and 165 mA h g?1, respectively. The discharge capacities of the FeS‐rGO and Fe3O4‐rGO composite powders at the 50th cycle were 547 and 150 mA h g?1, respectively. The FeS‐rGO composite powder showed superior sodium‐ion storage performance compared to the Fe3O4‐rGO composite powder.  相似文献   

19.
The SnO2 sheet/graphite composite was synthesized by a hydrothermal method for high-capacity lithium storage. The microstructures of products were characterized by XRD and FE-SEM. The electrochemical performance of SnO2 sheet/graphite composite was measured by galvanostatic charge/discharge cycling and EIS. The first discharge and charge capacities are 1,072 and 735 mAh g?1 with coulombic efficiency of 68.6 %. After 40 cycles, the reversible discharge capacity is still maintained at 477 mAh g?1. The results show that the SnO2 sheet/graphite composite displays superior Li-battery performance with large reversible capacity and good cyclic performance.  相似文献   

20.
A label‐free DNA biosensor based on three‐dimensional reduced graphene oxide (3D‐rGO) and polyaniline (PANI) nanofibers modified glassy carbon electrode (GCE) was successfully developed for supersensitive detection of breast cancer BRCA1. The results demonstrated that 3D‐rGO and PANI nanofibers had synergic effects for reducing the charge transfer resistance (Rct), meaning a huge enhancement in electrochemical activity of 3D‐rGO‐PANI/GCE. Probe DNA could be immobilized on 3D‐rGO‐PANI/GCE for special and sensitive recognition of target DNA (1.0×10?15–1.0×10?7 M) with a theoretical LOD of 3.01×10?16 M (3S/m). Furthermore, this proposed nano‐biosensor could directly detect BRCA1 in real blood samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号